

Ground-level gaseous pollutants across China: daily seamless mapping and long-term spatiotemporal variations

5 Jing Wei^{1*}, Zhanqing Li^{1*}, Jun Wang², Can Li¹, Pawan Gupta^{3,4}, Maureen Cribb¹

6

4

- 7 1. Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary
- 8 Center, University of Maryland, College Park, MD, USA
- 9 2. Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for
- 10 Global and Regional Environmental Research, University of Iowa, USA
- 11 3. STI, Universities Space Research Association (USRA), Huntsville, AL, USA
- 12 4. NASA Marshall Space Flight Center, Huntsville, AL, USA
- 13

- * Corresponding authors: zli@atmos.umd.edu; weijing_rs@umd.edu
- 15

16 Abstract

17	Gaseous pollutants at the ground level seriously threaten the urban air quality environment and
18	public health. There are few estimates of gaseous pollutants that are spatially and temporally
19	resolved and continuous over long periods in China. This study takes advantage of big data and
20	artificial intelligence technologies to generate seamless daily maps of three major pollutant gases,
21	i.e., NO ₂ , SO ₂ , and CO, across China from 2013 to 2020 at a uniform spatial resolution of 10 km.
22	Cross-validation illustrated a high data quality on a daily basis for NO2, SO2, and CO, with mean
23	out-of-bag coefficients of determination (root-mean-square errors) of 0.84 (7.99 $\mu\text{g/m}^3$), 0.84 (10.7
24	μ g/m ³), and 0.80 (0.29 mg/m ³), respectively. They have experienced significant declines and then
25	recoveries during and after the COVID-19 lockdown associated with changes in anthropogenic
26	emissions in eastern China, while surface CO recovered faster than SO ₂ and NO ₂ . All gaseous
27	pollutants decreased significantly by 0.23, 2.01, and 49 μ g/m ³ per year ($p < 0.001$) across China
28	during 2013-2020, especially in three urban agglomerations. The declining rates were larger during
29	2013–2017 but slowed down in recent years. Both the areas and occurrence probabilities of days
30	exceeding air quality standards also gradually shrank and weakened over time, especially for SO_2
31	and CO, which almost disappeared during 2018-2020, suggesting significant improvements in air
32	quality in China. This reconstructed dataset of surface gaseous pollutants, i.e., ChinaHighNO2,
33	ChinaHighSO2, and ChinaHighCO, will benefit future (especially short-term) air pollution and
34	environmental health-related studies.
35	

36 1. Introduction

37	Air pollution has been a major environmental concern, affecting human health, weather and climate
38	(Kan et al., 2012; Kinney, 2008; Li et al., 2017b; Anenberg et al., 2022; Sun et al., 2010; Orellano et
39	al., 2020; Murray et al., 2020), and has thus drawn worldwide attention. The sources of air pollution
40	are complex. They include natural sources such as wildfires and anthropogenic emissions, including
41	pollutants discharged from industrial production (e.g., smoke/dust, sulfur oxides, NO _x , and VOCs),
42	hazardous substances released from burning coal during heating seasons (e.g., dust, SO ₂ , and CO),
43	and waste gases (e.g., CO, SO ₂ , and NO _x) generated by transportation, especially in big cities.
44	Among various air pollutants, the followings have been most widely recognized, particulate matters
45	(e.g., $PM_{2.5}$ and PM_{10}), and gaseous pollutants (e.g., O_3 , NO_2 , SO_2 , and CO , among others]. Many
46	countries have built ground-based networks to monitor a variety of conventional pollutants in real-
47	time. China has experienced serious ambient air pollution for a long time, prompting the
48	establishment of a large-scale air quality monitoring network (Mee, 2018). Over the years, much
49	effort has been made to model different species of air pollutants. Many studies on particulate matter
50	(e.g., PM1, PM2.5, and PM10) have been carried out with a focus on China (Ma et al., 2022; Fang et
51	al., 2016; Wei et al., 2019b; Chen et al., 2018; Wei et al., 2021a; Wei et al., 2021b; Li et al., 2017a;
52	Zhang et al., 2018). By contrast, ground-level gaseous pollutants have been much less studied.
53	The global COVID-19 pandemic has motivated many attempts to estimate surface NO2
54	concentrations (Tian et al., 2020; Who, 2020) from various satellite-retrieved tropospheric NO2
55	products, e.g., OMI and TROPOMI, by adopting different statistical regression (Chi et al., 2021;
56	Qin et al., 2017; Zhang et al., 2018) and artificial intelligence (Chi et al., 2022; Dou et al., 2021;
57	Chen et al., 2019; Zhan et al., 2018; Wang et al., 2021; Liu, 2021) models. In contrast, studies on
58	surface SO_2 and CO with a focus on whole of China are meager, limited by a lack of tropospheric
59	satellite remote-sensing products and weaker signals (Li et al., 2020; Liu et al., 2019; Wang et al.,
60	2021; Han et al., 2022). Such studies still face more challenges, e.g., satellite data gaps and missing
61	values seriously limit their application and the neglect of the spatial and temporal differences in air
62	pollution in the modeling process. In addition, most previous studies mainly focused on studying a
63	single or a few species during relatively short periods of observation.

- 64 As such, here, we aim to reconstruct a long-term daily seamless dataset of three ambient gaseous
- 65 pollutants (i.e., surface NO₂, SO₂, and CO) in China at a uniform 10 km resolution to study air
- quality. We adopted the spatiotemporal ensemble-learning model to estimate three surface gaseous
- 67 pollutants from big data. Using this dataset, the long-term spatiotemporal variations of the three
- 68 gaseous pollutants and the impacts of implementing environmental protection policies and COVID-
- 69 19 epidemic are investigated.
- 70

71 **2. Materials and methods**

- 72 2.1 Big data
- 73 2.1.1 Ground-based measurements
- 74 Major input data employed in the study are hourly routine measurements of the ground-level NO₂,
- 75 SO₂, and CO concentrations of at approximately 2000 reference-grade ground-based monitoring
- stations across China from 2013 to 2020. Due to a change in the reference state implemented on 31
- August 2018 (Mee, 2018), we first converted the concentrations of the three gaseous pollutants to
- the uniform standard condition (i.e., 273 K and 1013 hPa) for consistency. Daily values for each air

79 pollutant at each station in each year were then averaged from valid hourly measurements that had

- 80 undergone additional quality-control checks.
- 81

82 2.1.2 Satellite, reanalysis, and model data

Satellite remote sensing data used here include the daily seamless tropospheric NO_2 products (0.25°

 $\times 0.25^{\circ}$) generated by first combining OMI/Aura and Global Ozone Monitoring Experiment-2B

retrievals (He et al., 2020), and then gap-filling using CAMS tropospheric NO₂ simulations via

- machine learning (Wei et al., 2022b), and MODIS monthly NDVI ($0.05^{\circ} \times 0.05^{\circ}$), LandScanTM
- annual population (POP, 1 km) (Bright et al., 2000), and the SRTM digital elevation model (DEM,
- 88 90 m). ERA5-Land $(0.1^{\circ} \times 0.1^{\circ})$ and ERA5 global reanalysis $(0.25^{\circ} \times 0.25^{\circ})$ provided hourly
- 89 meteorological fields (Muñoz-Sabater et al., 2021; Hersbach et al., 2020). The following eight
- 90 variables form the reanalysis are employed in our study: 2-m temperature (TEM), precipitation
- 91 (PRE), evaporation (ET), 10-m u- and v-components of wind (WU and WV), boundary-layer height
- 92 (BLH), relative humidity (RH), and surface pressure (SP). Besides, model-simulated SO₂ and CO

- 93 surface mass concentrations were also included from the MERRA-2 and GEOS-FP global
- reanalysis every 1 and 3 hours at horizontal resolutions of $0.625^{\circ} \times 0.5^{\circ}$ and $0.3125^{\circ} \times 0.25^{\circ}$,
- 95 respectively. CAMS global reanalysis provided three-hour NO₂ simulations modeled on the earth's
- surface (every 3 hours, with a horizontal resolution of $0.75^{\circ} \times 0.75^{\circ}$) (Inness et al., 2019).
- 97 Monthly $^{\circ} \times 0.1^{\circ}$ anthropogenic emissions, i.e., NO_x, SO₂, and CO, were collected from CAMS
- 98 global emission inventories. Here, for these fine-temporal-resolution variables, all hourly-level
- 99 simulations in a day were first averaged for each grid to calculate daily means. All variables were
- aggregated or resampled into a $0.1^{\circ} \times 0.1^{\circ}$ resolution for consistency.
- 101

102 2.2 Pollutant gas modelling

- 103 The current study is an extension of our previous work related to O₃ (Wei et al., 2022a), aimed at
- 104 extending the long-term and full-coverage mapping of multi-type ground-level gaseous pollutants at
- 105 a uniform grid resolution of $0.1^{\circ} \times 0.1^{\circ}$ across China. Thus, the developed Space-Time Extra-Tree
- 106 (STET) model was extended to estimate three additional species of surface pollutant gases, i.e.,
- 107 NO₂, SO₂, and CO. The uniqueness of this method is that it considers the autocorrelation and
- 108 differences in air pollution in space and time, improving the model performance on the basis of
- 109 ensemble learning.
- 110 For the surface NO₂ estimation, the STET was applied to the main input variables of NO₂ column
- amounts, model-simulated surface NO₂ concentrations, and NO_x emissions; together with the
- ancillary input variables of the aforementioned meteorological, land, and population (POP)
- 113 variables, as denoted in Equation 1. Limited by long-term and high-resolution satellite tropospheric
- 114 SO₂ and CO products, model-simulated surface SO₂ and CO concentrations and emissions were
- 115 used as main predictors along with the same auxiliary variables as NO₂ to construct the STET
- 116 model for separately estimating surface SO₂ (Equation 2) and CO (Equation 3):

- 118 $NO_{2(ijt)} \sim f_{STET}(MNO_{2(ijt)}, SNO_{2(ijt)}, ENOx_{ijm}, Meteorology_{ijt}, NDVI_{ijm}, DEM_{ijy}, POP_{ijy}, P_s, P_t)$ (1)
- 119 $SO_{2(ijt)} \sim f_{STET}(MSO_{2(ijt)}, ESO_{2(ijm)}, Meteorology_{ijt}, NDVI_{ijm}, DEM_{ijy}, POP_{ijy}, P_s, P_t)$ (2)
- 120 $CO_{ijt} \sim f_{STET}(MCO_{ijt}, ECO_{ijm}, Meteorology_{ijt}, NDVI_{ijm}, DEM_{ijy}, POP_{ijy}, P_s, P_t)$ (3)
- 121

- 122 where NO_{2(ijt)}, SO_{2(ijt)}, and CO_{ijt} indicate daily ground-based NO₂, SO₂, and CO measurements or
- estimations at one grid (i, j) on the tth day of a year; MNO_{2(ijt)}, MSO_{2(ijt)}, MCO_{ijt}, and SNO_{2(ijt)}
- indicate daily model-simulated surface NO₂, SO₂, and CO concentrations and the satellite
- tropospheric NO₂ column amount at one grid (i, j) on the tth day of a year; $ENOx_{ijm}$, $ESO_{2(ijm)}$, and
- 126 ECO_{iim} indicate monthly anthropogenic NO_x, SO₂, and CO emissions at one grid (i, j) on the mth
- 127 month of a year; *Meteorology_{ijt}* represents each meteorological variable at one grid (i, j) on the tth
- day of a year; DEM_{ijy} and POP_{ijy} indicate the population at one grid (i, j) of a year; P_s and P_t
- 129 indicate the space and time terms, represented by the longitudes and latitudes of spatial points and
- 130 their distances to the center (D_{md}) and each corner of the study domain, and the day of the year
- 131 (DOY), respectively.
- 132 Here, two widely-used 10-fold out-of-sample and out-of-station cross-validation (CV) methods
- 133 (Wei et al., 2022a; Rodriguez et al., 2010) were employed to assess the data quality. They were
- 134 performed by randomly dividing data samples and ground monitoring stations into independent
- 135 training and testing datasets to evaluate the overall accuracy and prediction reliability, i.e., estimates
- 136 for the samples and predictions for the stations that are excluded from training, respectively. Wei et
- 137 al. (2022a) provides details about how these two methods work.

138

139 3. Results and discussion

140 **3.1 Model performance**

141 Using the constructed STET models, we generated daily 10-km resolution dataset with complete

142 coverage (spatial coverage = 100%) for three ground-level gaseous pollutants from 2013 to 2020 in

- 143 China, called ChinaHighNO₂, ChinaHighSO₂, and ChinaHighCO, respectively. They are all
- 144 assembled to the ChinaHighAirPollutants (CHAP) dataset. Figure 1 shows the cross-validation
- 145 results of all daily estimates and predictions for ground-level NO₂, SO₂, and CO concentrations in
- 146 China (sample size: $N \approx 3.6$ million). Surface NO₂ and SO₂ concentrations fell between 200 and
- $147 \quad 500 \,\mu\text{g/m}^3$, respectively, and daily estimates were highly correlated to observations, with the same
- 148 coefficient of determination ($R^2 = 0.84$) and slopes (0.86 and 0.84) close to 1, respectively. Average
- 149 root-mean-square errors (RMSEs) of surface NO₂ and SO₂ estimates were 7.99 and 10.07 μ g/m³,
- respectively, and mean absolute errors (MAEs) were 5.34 and 4.68 μ g/m³, respectively. Most

180

151	observed CO concentrations were less than 10 mg/m^3 , agreeing well ($R^2 = 0.80$, slope = 0.79) with
152	daily estimates, and the average RMSE (MAE) is 0.29 (0.16) mg/m ³ . Compared to estimation
153	accuracies (Figure 1a-c), prediction accuracies slightly decreased, which is acceptable considering
154	the weak signals of trace gases. Daily SO ₂ , NO ₂ , and CO predictions (Figure 1d-f) show reasonable
155	agreements with ground measurements ($R^2 = 0.70$, 0.68, and 0.61, respectively) and their respective
156	RMSE (MAE) values were 14.28 (8.10) μ g/m ³ , 11.57 (7.06) μ g/m ³ , and 0.42 (0.24) mg/m ³ , which
157	basically represent the accuracy for areas without ground monitoring stations.
158	
159	[Please insert Figure 1 here]
160 161	The performance of our air pollution modeling was also evaluated on an annual basis (Table 2). Our
162	model works well in estimating and predicting the concentrations of different ground-level pollutant
163	gases among different years. The model performance has continuously improved over time, as
164	indicated by increasing correlations and decreasing uncertainties because of increasing density of
165	around stations (especially in the suburban areas of cities) and improved quality control of
166	measurements significantly increasing the number (e.g. from 169 thousand in 2013 to more than
167	522 thousand in 2020) and quality of data samples
169	522 mousaile in 2020) and quarity of data samples.
160	[Please insert Table 2 here]
170	[1 leuse insert fuore 2 nere]
171	Figure 2 shows the individual-site-scale cross-validated accuracy and uncertainty in estimating
170	doily pollutent gases in China. Our model has a strong ability to conture doily surface NOs
172	concentrations at most stations in China, with about 80% (82%) of them having CV $P^2 > 0.7$
173	Concentrations at most stations in China, with about 80% (85%) of them having CV-K > 0.7
174	$(RMSE < 10 \mu g/m)$ with reference to ground measurements. By contrast, the model did not
175	perform as well in estimating daily surface SO ₂ and CO concentrations. Nevertheless, regarding $CO = 0.00\%$ (i.e. $c_{10} = 1.00\%$) (i.e. $c_{10} = 0.00\%$) (i.e. $c_{10} = 0.00\%$) (i.e. $c_{10} = 0.00\%$)
176	SO ₂ , 80% of the stations had CV-R ² values > 0.6, RMSE values were < 12 μ g/m ² . Regarding CO,
177	85% of the stations had CV-R ² values > 0.6, and KMSE values were generally < 0.4 mg/m ³ .
1/8	
179	[Please insert Figure 2 here]

181	Figure 3 shows the monthly and yearly composites of ground-level NO ₂ , SO ₂ , and CO
182	concentrations as a function of ground measurements from all monitoring stations in China for the
183	years 2013 to 2020. On the monthly scale, we collected a total of \sim 119,000 matched samples of the
184	three gaseous pollutants. Accuracies significantly improved, with increasing R^2 (decreasing RMSE)
185	values of 0.93 (4.41 $\mu g/m^3$), 0.97 (4.03 $\mu g/m^3$), and 0.94 (0.13 mg/m^3) for NO2, SO2, and CO,
186	respectively. On the annual scale, more than $\sim 10,000$ matched samples were collected, showing
187	better agreement with observations (e.g., $R^2 = 0.94$, 0.98, and 0.97) and lower uncertainties (e.g.,
188	$RMSE = 3.06 \ \mu g/m^3$, 2.46 $\mu g/m^3$, and 0.07 mg/m ³) for NO ₂ , SO ₂ , and CO, respectively. These
189	results illustrate the high quality of our dataset for different gaseous pollutants, illustrating its
190	applicability to the investigations of short-term exposure and long-term variations.
191	
192	[Please insert Figure 3 here]
193	
194	3.2 Spatiotemporal variations
195	3.2.1 Spatial coverage and distribution
196	Figure 4 shows spatial distributions of the three pollutant gases across China on a typical day (1
197	January 2018). The spatial patterns of these gaseous pollutants are consistent with those observed
198	on the ground, especially in highly polluted areas, e.g., severe surface NO ₂ pollution in the North
199	China Plain (NCP) and high surface SO ₂ emissions in Shanxi Province. The unique advantage of
200	our dataset is that it can provide valuable gaseous pollutant information on a daily basis at locations
201	in China where ground measurements are not available. This addresses the major issues of scanning
202	gaps and the numerous missing values in satellite remote sensing retrievals at cloudy locations, e.g.,
203	average daily spatial coverage of the OMI tropospheric NO2 product is only 42%. Our dataset
204	provides spatial-complete coverage, significantly increasing the daily data utilization by 58%.
205	
206	[Please insert Figure 4 here]
207	
208	Figure 5 shows seasonal maps for each gas pollutant during the period 2013–2020 across China.

209 Pollutant gases vary significantly in space and time across China, where high surface NO₂ levels are

- 210 mainly distributed in typical urban agglomerations, e.g., the Beijing-Tianjin-Hebei (BTH) region,
- 211 the Yangtze River and Pearl River Deltas (YRD and PRD), and scattered large cities with intensive
- 212 human activities and highly developed transportation systems (e.g., Urumqi, Chengdu, Xi'an, and
- 213 Wuhan, among others). High surface SO₂ concentrations are mainly observed in northern China
- 214 (e.g., Shanxi, Hebei, and Shandong Provinces), associated with combustion emissions from
- anthropogenic sources, and the Yunnan Guizhou Plateau in southwest China, likely associated with
- 216 emissions from volcanic eruptions. By contrast, except in some areas in central China (e.g., Shanxi
- and Hebei), surface CO concentrations are overall low.
- 218 Over time, significant differences in spatial patterns were seen. Surface NO₂, SO₂, and CO in
- summer (average = $15.9 \pm 4.7 \ \mu g/m^3$, $22.9 \pm 13.4 \ \mu g/m^3$, and $1.1 \pm 0.3 \ m g/m^3$, respectively) were
- 220 the lowest, thanks to favorable meteorological conditions. Pollution levels were highest in winter,
- 221 with average values increasing by ~1.5–1.9 times those in summer. This difference was much larger
- in central and eastern China, e.g., 2.3–3.4 times higher in the BTH, due to large amounts of direct
- 223 NO_x, SO₂, and CO emissions from burning coal for heating in winter in northern China. Spring and
- autumn show relatively similar spatial patterns among three gaseous pollutants.
- 225 226

[Please insert Figure 5 here]

227

228 3.2.2 Short-term epidemic effects on air quality

229 The unique advantage of seamless day-to-day gaseous pollutant maps allows us to investigate the

230 COVID-19 effects (Who, 2020) in China. Here, we compared the relative differences of each air

231 pollutant from February to April between 2020 and 2019 in eastern China (Figure 6). In February,

- surface NO₂ sharply reduced by more than 30% in eastern China, especially in key urban
- agglomerations and megacities (relative change > 50%). A significant decrease in surface SO₂ (>
- $234 \quad 40\%$) was observed in northern areas where heavy industry is the mainstay in China, while there
- 235 was little change in southern China. Surface CO also showed drastic decreases, especially in
- southeast China, but the amplitude was smaller than those of the other two gaseous pollutants.
- 237 These were attributed to extensive plant closures and traffic controls due to the lockdown, which
- 238 started at the end of January 2020, significantly reducing anthropogenic NO_x, SO₂, and CO

239	emissions (Ding et al., 2020; Zheng et al., 2021).
240	In March, surface NO2 concentrations were still largely lower than typical levels in most areas,
241	especially in areas hit hardest by the epidemic, i.e., Hubei province and its surrounding areas
242	(relative change > 30%). By comparison, the decline in surface SO_2 largely slowed by more than
243	two times in the NCP and Shanxi Province. However, surface CO returned to normal levels the
244	fastest. In April, surface NO_2 and SO_2 were comparable to historical concentrations (within $\pm 10\%$)
245	or alternately changed across eastern China due to rebounding anthropogenic emissions (Ding et al.,
246	2020), indicating that they were almost recovered. In addition, the three air pollutants fell within \pm
247	10% around Wuhan, Hubei Province, indicating that people there had returned to normal life.
248	
249	[Please insert Figure 6 here]
250	
251	3.2.3 Long-term trends and policy implications
252	To better investigate the spatiotemporal variations of surface air pollution, we calculated linear
253	trends and significance levels using monthly anomalies by removing seasonal cycles (Wei et al.,
254	2019a). Given that monitoring stations were sparse and unevenly distributed in western China,
255	especially in earlier years, we will focus on eastern part of the country for the trend analysis. Figure
256	7 shows annual mean maps of the three gaseous pollutants for each year from 2013 to 2020 in
257	eastern China. They all have changed greatly in the past eight years across China, peaking around
258	2017 and have declined to their lowest levels in 2020, at annual mean surface decreasing rates of -
259	12%, -55%, and -31% across China for NO ₂ , SO ₂ , and CO concentrations, respectively.
260	
261	[Please insert Figure 7 here]
262	
263	Most of eastern China showed more significant decreasing trends, especially in three urban
264	agglomerations (trend = -0.51~-1.21 μ g/m ³ /yr, $p < 0.001$), as well as in other large cities (e.g.,
265	Wuhan and Chengdu) (Figure 8, and Table 3). The largest downward trends mainly occurred in
266	northern and central China, especially in the BTH (trend = -6.01 and 109 μ g/m ³ /yr, $p < 0.001$,
267	respectively). This is mainly due to the change in fuel for heating from coal to gas widespread

- across China in winter (Wang et al., 2020), greatly reducing the emissions of precursor gases
- 269 (Koukouli et al., 2018). Increasing trends were, however, also found in Ningxia and Shanxi in
- 270 central China.
- 271 We divided the study into four periods to investigate the impact of implemented major emission
- 272 control measures taken in China. During the Clear Air Action Plan (CAAP, 2013–2017), surface
- 273 SO₂ and CO concentrations significantly decreased in most parts of eastern China, while surface
- 274 NO₂ reductions are limited to some places. The rates of decreases for all three pollutants accelerated
- in recent years, especially for NO₂ in southeast China (trend > 2 μ g/m³/yr, p < 0.05). These are
- thanks to the dramatic reductions in all main pollutant emissions (e.g., PM, SO₂, and NO_x) in key
- 277 regions (especially urbans) through the upgrading of key industries, industrial structure adjustment,
- 278 and coal-fired boiler remediation.
- 279 During the 13rd Five-Year-Plan (FYP, 2016–2020), surface NO₂ decreased at a rate of -0.46 µg/m³
- per year (p < 0.001) across China, with larger decreases in the BTH region and Hunan Province
- 281 (trend > 2 μ g/m³/yr, p < 0.05). More striking decreasing trends were found in southeast China.
- 282 Surface SO₂ also significant decreased but slowed down in eastern China. However, a greater
- 283 downward trend was observed in Shanxi Province, mainly due to the reduction in coal consumption.
- 284 Surface CO also continuously decreased, more rapidly in central China but less rapidly elsewhere.
- 285 The continuous decline in all pollutants is due to the binding reduction by 10-15% of total
- emissions of major pollutants like COD, SO₂, and NO_x.
- 287 During the Blue Sky Defense War (2018–2020), the majority of pollutants have dropped
- considerably, of which surface SO₂ changed the most in China (average = -27%), especially in
- central and eastern China (relative change > 50%). In addition, SO₂ decreased by 23–44% in three
- 290 key regions. Followed by surface CO with the national and regional mean reductions of 17% and
- 10-24%, respectively. By contrast, surface NO₂ had the least reduction at an average decreasing
- rate of 11% across China and 9–16% for the three key regions. The improvement in air quality
- 293 benefited from continuous reductions (by 2–3%) in total air pollutant emissions, coordinated
- reductions in greenhouse gas emissions, and the impacts of COVID-19.
- 295 296

[Please insert Figure 8 and Table 3 here]

297

298	With the daily seamless datasets, we can investigate the number of days exceeding their respective
299	air quality standard (Level 2 limitation) in a given year to evaluate the distribution and variations of
300	short-term pollution exposure (Figure 9). The areal extent of regions exposed to unacceptably high
301	pollutant-gas levels (i.e., daily NO_2 $> 80~\mu g/m^3,~SO_2 > 150~\mu g/m^3,~and~CO > 4~mg/m^3)$ were usually
302	small. NO2 pollution was mainly found in the NCP and a handful of big cities (e.g., Xi'an, Wuhan,
303	Guangzhou, and Shanghai), changing little over time. Surface SO2 pollution was mainly observed in
304	in central China (e.g., Hebei, Shandong, and Shanxi), with the areal extent of polluted regions
305	gradually decreasing over time until almost disappearing by 2020. The same was seen for surface
306	CO pollution, being worst in the BTH region and its surrounding areas before 2018, then almost
307	disappearing by 2020. Surface NO ₂ pollution was mainly observed in developed urban areas (e.g.,
308	Beijing, Tianjin, Shijiazhuang, and Wuhan), with 15% of the days exceeding the acceptable
309	standard in the early part of the study period, then decreasing to below 5% afterward.
310	
311	[Please insert Figure 9 here]
312	
313	Regionally, significant differences in the percentage of days with pollution levels exceeding
314	national standards are seen (Figure 10). For example, the BTH region was the only region
315	experiencing a high NO ₂ exposure risk, which gradually lessened from 2013 to 2018, when the
316	exposure risk reached zero. For surface SO ₂ , no high exposure days (daily mean $> 150 \ \mu\text{g/m}^3$) were
317	observed regionally, but a large number of days exceeding the Level 1 limitation (i.e., daily mean >
318	$50 \ \mu g/m^3$) were found in the BTH region. However, the number of days gradually decreased until
319	reaching zero after 2017. For surface CO, less than 1% of highly polluted days are found in the
320	BTH region in some individual years. These results suggest that with the unrelenting efforts of air
321	pollution prevention and control, the number of days with high pollution has been significantly

- 323
- 324

[Please insert Figure 10 here]

326 3.3 Model comparison

- 327 Long-term datasets (at least 2 years) of different gaseous pollutants generated with different
- 328 developed models in previous studies focusing on the whole of China are compared here. Only
- those studies applying the same validation approach were selected (Table 4). Most generated
- surface NO₂ datasets had low spatial resolutions ($\sim 0.125^{\circ} 0.25^{\circ}$) with numerous missing values
- limited by OMI satellite observations (Zhan et al., 2018; Dou et al., 2021; Chen et al., 2019; Xu et
- al., 2019; Chi et al., 2021). Some studies improved the spatial resolutions by introducing NO₂ data
- 333 from the recently launched Sentinel-5 TROPOMI satellite but can only provide dataset after
- 334 October 2018 (Chi et al., 2022; Liu, 2021; Wang et al., 2021; Wei et al., 2022b). Surface SO₂
- estimated from a SO₂ emission inventory and surface CO from the MOPITT and TROPOMI
- retrievals (Li et al., 2020; Liu et al., 2019; Wang et al., 2021) have a much lower data quality (Li et
- al., 2020; Li et al., 2017b; Wang et al., 2021). Overall, our gaseous pollutant datasets are superior to
- those from the studies listed in Table 4 in terms of either overall accuracy, or spatial coverage, or
- 339 length of data records.
- 340

[Please insert Table 4 here]

341 342

343 3.4 Successful applications

Our surface gaseous pollutant datasets have been freely available to the public online since March 2021 and have now been successfully employed for various application studies in environment and health. Strong associations and negative effects between ambient gaseous pollution (e.g., NO₂, SO₂,

- and CO) and a variety of diseases has been demonstrated for people of all ages through multi-
- 348 regional and national cohort studies in China. These diseases include general mortality (Zhang et
- al., 2022), cause-specific cardiovascular disease (Xu et al., 2022a), ischemic and hemorrhagic
- stroke (Xu et al., 2022b; Wu et al., 2022b; Cai et al., 2022; He et al., 2022), dementia mortality (Liu
- 351 et al., 2022), blood pressure (Song et al., 2022; Wu et al., 2022a), renal function (Li et al., 2022a),
- neurodevelopmental delay (Su et al., 2022), serum liver enzymes (Li et al., 2022b), overweight and
- obesity (Chen et al., 2022b), insomnia (Xu et al., 2021), subjective sleep quality (Wang et al.,
- 354 2022), and visual impairment (Chen et al., 2022a). These studies attest well to the value of the

- 355 CHAP dataset with some unique merits for the sake of public health, among others, now and in the356 future.
- 357

358 4. Summary and conclusions

359 Exposure to air pollution is detrimental to human health, which has been a major public concern in 360 heavy polluted regions like China where ground-based observation of pollutants is relatively short 361 and sparse than major developed countries. Moreover, the pollutants to travel long distances to 362 affect large down steam regions. To remedy the limitations of ground-based air pollution observation, this study applies the machine learning model of Space-Time Extra-Tree to estimate 363 ambient gaseous pollutants across China, with extensive input variables measured on the monitors, 364 satellites, and models. The estimated quantities are daily 10 km resolution (about 0.1 degrees) 365 seamless (spatial coverage = 100%) dataset for ground-level NO₂, SO₂, and CO concentrations in 366 China since 2013. This dataset was cross-evaluated in terms of overall accuracy and predictive 367 368 ability at different spatiotemporal levels. Daily estimates (predictions) of surface NO₂, SO₂, and CO from 2013 to 2020 across China are highly consistent with observations with average sample-based 369 (station-based) CV-R² of 0.84 (0.68), 0.84 (0.7), and 0.8 (0.61), and RMSEs of 7.99 (11.57) µg/m³, 370

371 10.7 (14.28) μ g/m³, and 0.29 (0.42) mg/m³y.

372 Pollutant gas concentrations varied significantly in the region, where high levels were mainly found

in the Northern China, especially in winter. All gaseous pollutants sharply declined in eastern China

during the COVID-19 outbreak, then gradually returned to historical levels. The recovery speed of

375 surface CO was faster than for NO₂ and SO₂. Over time and at the national scale, they have

significantly (p < 0.001) decreased by 0.23, 2.01, and 43 μ g/m³ per year during 2013–2020. Larger

377 reductions were found at the regional scale, especially the BTH. Improvements in air quality were

378 larger in the last decade or so but have slowed down in recent years. In particular, the areal extents

- 379 of regions experiencing air pollution and the probability of air pollution occurring have also
- 380 gradually decreased over time, especially during the period 2018–2020. This may be related with
- 381 the implementation of a series of tough environmental protection policies, which greatly reduced
- anthropogenic emissions and significantly improved air quality. This high-quality daily seamless
- 383 dataset will benefit future environmental and health-related studies focused on China, especially

384 studies investigating short-term air pollution exposure.

385

386 **Data availability**

- 387 CNEMC gaseous pollutants measurements are available at http://www.cnemc.cn; Reconstructed
- 388 OMI/Aura tropospheric NO₂ product is available at <u>https://doi.org/10.6084/m9.figshare.13126847</u>;
- 389 MODIS series products and MERRA2 reanalysis are available at https://search.earthdata.nasa.gov/;
- 390 SRTM DEM is available at <u>https://www2.jpl.nasa.gov/srtm/</u>; LandScanTM population is available at
- 391 <u>https://landscan.ornl.gov/;</u> ERA5 reanalysis is available at <u>https://cds.climate.copernicus.eu/;</u> GEOS
- 392 CF data is available at <u>https://portal.nccs.nasa.gov/datashare/gmao/;</u> CAMS reanalysis and emission
- 393 inventory are available at <u>https://ads.atmosphere.copernicus.eu/</u>.

394

395 CHAP dataset availability

- 396 The ChinaHighAirPollutants (CHAP) dataset is open access and freely available at https://weijing-
- 397 <u>rs.github.io/product.html</u>. The ChinaHighNO₂ dataset is available at
- 398 <u>https://doi.org/10.5281/zenodo.4641542</u>, the ChinaHighSO₂ dataset is available at
- 399 https://doi.org/10.5281/zenodo.4641538, and the ChinaHighCO dataset is available at
- 400 <u>https://doi.org/10.5281/zenodo.4641530</u>.
- 401

402 Acknowledgments

- 403 JW, and ZL, and JW were supported by the NASA grants (80NSSC21K1980 and
- 404 80NSSC19K0950). PG was supported by NASA's Research Opportunities in Space and Earth
- 405 Science (ROSES-2020), Program Element A.38: Health and Air Quality Applied Sciences Team.

407 **References**

408	Anenberg, S. C., Mohegh, A., Goldberg, D. L., Kerr, G. H., Brauer, M., Burkart, K., Hystad, P.,
409	Larkin, A., Wozniak, S., and Lamsal, L.: Long-term trends in urban NO ₂
410	concentrations and associated paediatric asthma incidence: estimates from global datasets, The
411	Lancet Planetary Health, 6, e49-e58, ttps://doi.org/10.1016/S2542-5196(21)00255-2, 2022.
412	Bright, E. A., Coleman, P. R., Dobson, J. E. J. P. E., and Sensing, R.: LandScan: A Global
413	Population Database for Estimating Populations at Risk, 66, 849-858, 2000.
414	Cai, M., Zhang, S., Lin, X., Qian, Z., McMillin, S. E., Yang, Y., Zhang, Z., Pan, J., and Lin, H.:
415	Association of Ambient Particulate Matter Pollution of Different Sizes With In-Hospital Case
416	Fatality Among Stroke Patients in China, Neurology, 10.1212/WNL.0000000000200546,
417	https://doi.org/10.1212/WNL.000000000200546, 2022.
418	Chen, G., Wang, Y., Li, S., Cao, W., Ren, H., Knibbs, L. D., Abramson, M. J., and Guo, Y.:
419	Spatiotemporal patterns of PM10 concentrations over China during 2005-2016: A satellite-
420	based estimation using the random forests approach, Environmental Pollution, 242, 605-613,
421	https://doi.org/10.1016/j.envpol.2018.07.012, 2018.
422	Chen, L., Wei, J., Ma, T., Gao, D., Wang, X., Wen, B., Chen, M., Li, Y., Jiang, J., Wu, L., Li, W.,
423	Liu, X., Song, Y., Guo, X., Dong, Y., and Ma, J.: Ambient gaseous pollutant exposure and
424	incidence of visual impairment among children and adolescents: findings from a longitudinal,
425	two-center cohort study in China, Environmental Science and Pollution Research,
426	https://doi.org/10.1007/s11356-022-20025-3, 2022a.
427	Chen, L., Gao, D., Ma, T., Chen, M., Li, Y., Ma, Y., Wen, B., Jiang, J., Wang, X., Zhang, J., Chen,
428	S., Wu, L., Li, W., Liu, X., Guo, X., Huang, S., Wei, J., Song, Y., Ma, J., and Dong, Y.: Could
429	greenness modify the effects of physical activity and air pollutants on overweight and obesity
430	among children and adolescents?, Science of The Total Environment, 832, 155117,
431	https://doi.org/10.1016/j.scitotenv.2022.155117, 2022b.
432	Chen, ZY., Zhang, R., Zhang, TH., Ou, CQ., and Guo, Y.: A kriging-calibrated machine learning
433	method for estimating daily ground-level NO2 in mainland China, Science of The Total
434	Environment, 690, 556-564, https://doi.org/10.1016/j.scitotenv.2019.06.349, 2019.
435	Chi, Y., Fan, M., Zhao, C., Sun, L., Yang, Y., Yang, X., and Tao, J.: Ground-level NO2
436	concentration estimation based on OMI tropospheric NO2 and its spatiotemporal
437	characteristics in typical regions of China, Atmospheric Research, 264, 105821,
438	https://doi.org/10.1016/j.atmosres.2021.105821, 2021.
439	Chi, Y., Fan, M., Zhao, C., Yang, Y., Fan, H., Yang, X., Yang, J., and Tao, J.: Machine learning-
440	based estimation of ground-level NO2 concentrations over China, Science of The Total
441	Environment, 807, 150721, https://doi.org/10.1016/j.scitotenv.2021.150721, 2022.
442	Ding, J., van der A, R. J., Eskes, H. J., Mijling, B., Stavrakou, T., van Geffen, J. H. G. M., and
443	Veefkind, J. P.: NOx Emissions Reduction and Rebound in China Due to the COVID-19 Crisis,
444	47, e2020GL089912, https://doi.org/10.1029/2020GL089912, 2020.
445	Dou, X., Liao, C., Wang, H., Huang, Y., Tu, Y., Huang, X., Peng, Y., Zhu, B., Tan, J., Deng, Z., Wu,
446	N., Sun, T., Ke, P., and Liu, Z.: Estimates of daily ground-level NO2 concentrations in China
447	based on Random Forest model integrated K-means, Advances in Applied Energy, 2, 100017,
448	https://doi.org/10.1016/j.adapen.2021.100017, 2021.
449	Fang, X., Zou, B., Liu, X., Sternberg, T., and Zhai, L.: Satellite-based ground PM2.5 estimation
450	using timely structure adaptive modeling, Remote Sensing of Environment, 186, 152-163,

451	https://doi.org/10.1016/j.rse.2016.08.027, 2016.
452	Han, W., He, T. L., Tang, Z., Wang, M., Jones, D., and Jiang, Z.: A comparative analysis for a deep
453	learning model (hyDL-CO v1.0) and Kalman filter to predict CO concentrations in China,
454	Geosci. Model Dev., 15, 4225-4237, https://doi.org/10.5194/gmd-15-4225-2022, 2022.
455	He, F., Wei, J., Dong, Y., Liu, C., Zhao, K., Peng, W., Lu, Z., Zhang, B., Xue, F., Guo, X., and Jia,
456	X.: Associations of ambient temperature with mortality for ischemic and hemorrhagic stroke
457	and the modification effects of greenness in Shandong Province, China, Science of The Total
458	Environment, 158046, https://doi.org/10.1016/j.scitotenv.2022.158046, 2022.
459	He, Q., Qin, K., Cohen, J. B., Loyola, D., Li, D., Shi, J., and Xue, Y.: Spatially and temporally
460	coherent reconstruction of tropospheric NO ₂ over China combining OMI and
461	GOME-2B measurements, Environmental Research Letters, 15, 125011,
462	https://doi.org/10.1088/1748-9326/abc7df, 2020.
463	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
464	Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
465	G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
466	Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
467	Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C.,
468	Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, JN.: The
469	ERA5 global reanalysis, 146, 1999-2049, https://doi.org/10.1002/qj.3803, 2020.
470	Inness, A., Ades, M., Agustí-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A. M.,
471	Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z.,
472	Massart, S., Parrington, M., Peuch, V. H., Razinger, M., Remy, S., Schulz, M., and Suttie, M.:
473	The CAMS reanalysis of atmospheric composition, Atmos. Chem. Phys., 19, 3515-3556,
474	https://doi.org/10.5194/acp-19-3515-2019, 2019.
475	Kan, H., Chen, R., and Tong, S.: Ambient air pollution, climate change, and population health in
476	China, Environment International, 42, 10-19, https://doi.org/10.1016/j.envint.2011.03.003,
477	2012.
478	Kinney, P. L.: Climate Change, Air Quality, and Human Health, American Journal of Preventive
479	Medicine, 35, 459-467, https://doi.org/10.1016/j.amepre.2008.08.025, 2008.
480	Koukouli, M. E., Theys, N., Ding, J., Zyrichidou, I., Mijling, B., Balis, D., and van der A, R. J.:
481	Updated SO2 emission estimates over China using OMI/Aura observations, Atmos. Meas.
482	Tech., 11, 1817-1832, https://doi.org/10.5194/amt-11-1817-2018, 2018.
483	Li, R., Cui, L., Liang, J., Zhao, Y., Zhang, Z., and Fu, H.: Estimating historical SO2 level across the
484	whole China during 1973–2014 using random forest model, Chemosphere, 247, 125839,
485	https://doi.org/10.1016/j.chemosphere.2020.125839, 2020.
486	Li, S., Meng, Q., Laba, C., Guan, H., Wang, Z., Pan, Y., Wei, J., Xu, H., Zeng, C., Wang, X., Jiang,
487	M., Lu, R., Guo, B., and Zhao, X.: Associations between long-term exposure to ambient air
488	pollution and renal function in Southwest China: The China Multi-Ethnic Cohort (CMEC)
489	study, Ecotoxicology and Environmental Safety, 242, 113851,
490	<u>https://doi.org/10.1016/j.ecoenv.2022.113851</u> , 2022a.
491	L1, T., Shen, H., Yuan, Q., Zhang, X., and Zhang, L.: Estimating Ground-Level PM2.5 by Fusing
492	Satellite and Station Observations: A Geo-Intelligent Deep Learning Approach, 44, 11,985-
493	911,993, <u>https://doi.org/10.1002/2017GL075710</u> , 2017a.

494 Li, Y., Yuan, X., Wei, J., Sun, Y., Ni, W., Zhang, H., Zhang, Y., Wang, R., Xu, R., Liu, T., Yang, C.,

495	Chen, G., Xu, J., and Liu, Y.: Long-term exposure to ambient air pollution and serum liver
496	enzymes in older adults: A population-based longitudinal study, Annals of Epidemiology, 74,
497	1-7, https://doi.org/10.1016/j.annepidem.2022.05.011, 2022b.
498	Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.:
499	Aerosol and boundary-layer interactions and impact on air quality, National Science Review, 4,
500	810-833, https://doi.org/10.1093/nsr/nwx117, 2017b.
501	Liu, D., Di, B., Luo, Y., Deng, X., Zhang, H., Yang, F., Grieneisen, M. L., and Zhan, Y.: Estimating
502	ground-level CO concentrations across China based on the national monitoring network and
503	MOPITT: potentially overlooked CO hotspots in the Tibetan Plateau, Atmos. Chem. Phys., 19,
504	12413-12430, https://doi.org/10.5194/acp-19-12413-2019, 2019.
505	Liu, J.: Mapping high resolution national daily NO2 exposure across mainland China using an
506	ensemble algorithm, Environmental Pollution, 279, 116932,
507	https://doi.org/10.1016/j.envpol.2021.116932, 2021.
508	Liu, T., Zhou, Y., Wei, J., Chen, Q., Xu, R., Pan, J., Lu, W., Wang, Y., Fan, Z., Li, Y., Xu, L., Cui,
509	X., Shi, C., Zhang, L., Chen, X., Bao, W., Sun, H., and Liu, Y.: Association between short-term
510	exposure to ambient air pollution and dementia mortality in Chinese adults, Science of The
511	Total Environment, 849, 157860, https://doi.org/10.1016/j.scitotenv.2022.157860, 2022.
512	Ma, Z., Dey, S., Christopher, S., Liu, R., Bi, J., Balyan, P., and Liu, Y.: A review of statistical
513	methods used for developing large-scale and long-term PM2.5 models from satellite data,
514	Remote Sensing of Environment, 269, 112827, https://doi.org/10.1016/j.rse.2021.112827,
515	2022.
516	MEE: Revision of the Ambien air quality standards (GB 3095-2012) (in Chinese), Ministry of
517	Ecology and Environment, available at:
518	http://www.mee.gov.cn/xxgk2018/xxgk/xxgk2001/201808/t20180815_20629602.html, 2018.
519	Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G.,
520	Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
521	Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J. N.: ERA5-Land: a
522	state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349-
523	4383, 10.5194/essd-13-4349-2021, 2021.
524	Murray, C. J. L., Aravkin, A. Y., Zheng, P., and al., e.: Global burden of 87 risk factors in 204
525	countries and territories, 1990–2019: a systematic analysis for the Global Burden of
526	Disease Study 2019, The Lancet, 396, 1223-1249, https://doi.org/10.1016/S0140-
527	<u>6736(20)30752-2</u> , 2020.
528	Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., and Ciapponi, A.: Short-term exposure to
529	particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause
530	and cause-specific mortality: Systematic review and meta-analysis, Environment International,
531	142, 105876, https://doi.org/10.1016/j.envint.2020.105876, 2020.
532	Qin, K., Rao, L., Xu, J., Bai, Y., Zou, J., Hao, N., Li, S., and Yu, C.: Estimating Ground Level NO2
533	Concentrations over Central-Eastern China Using a Satellite-Based Geographically and
534	Temporally Weighted Regression Model, 9, 950, 2017.
535	Rodriguez, J. D., Perez, A., and Lozano, J. A.: Sensitivity Analysis of k-Fold Cross Validation in
536	Prediction Error Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence,
537	32, 569-575, 10.1109/TPAMI.2009.187, 2010.
538	Song, J., Du, P., Yi, W., Wei, J., Fang, J., Pan, R., Zhao, F., Zhang, Y., Xu, Z., Sun, Q., Liu, Y.,

539	Chen, C., Cheng, J., Lu, Y., Li, T., Su, H., and Shi, X.: Using an Exposome-Wide Approach to
540	Explore the Impact of Urban Environments on Blood Pressure among Adults in Beijing-
541	Tianjin–Hebei and Surrounding Areas of China, Environmental Science & Technology,
542	https://doi.org/10.1021/acs.est.1c08327, 2022.
543	Su, X., Zhang, S., Lin, Q., Wu, Y., Yang, Y., Yu, H., Huang, S., Luo, W., Wang, X., Lin, H., Ma, L.,
544	and Zhang, Z.: Prenatal exposure to air pollution and neurodevelopmental delay in children: A
545	birth cohort study in Foshan, China, Science of The Total Environment, 816, 151658,
546	https://doi.org/10.1016/j.scitotenv.2021.151658, 2022.
547	Sun, Q., Hong, X., and Wold, L. E.: Cardiovascular Effects of Ambient Particulate Air Pollution
548	Exposure, 121, 2755-2765, https://doi.org/10.1161/CIRCULATIONAHA.109.893461, 2010.
549	Tian, H., Liu, Y., Li, Y., Wu, CH., Chen, B., Kraemer, M. U. G., Li, B., Cai, J., Xu, B., Yang, Q.,
550	Wang, B., Yang, P., Cui, Y., Song, Y., Zheng, P., Wang, Q., Bjornstad, O. N., Yang, R.,
551	Grenfell, B. T., Pybus, O. G., and Dye, C.: An investigation of transmission control measures
552	during the first 50 days of the COVID-19 epidemic in China, Science, 368, 638-642,
553	https://doi.org/10.1126/science.abb6105, 2020.
554	Wang, L., Zhang, J., Wei, J., Zong, J., Lu, C., Du, Y., and Wang, Q.: Association of ambient air
555	pollution exposure and its variability with subjective sleep quality in China: A multilevel
556	modeling analysis, Environmental Pollution, 312, 120020,
557	https://doi.org/10.1016/j.envpol.2022.120020, 2022.
558	Wang, S., Su, H., Chen, C., Tao, W., Streets, D. G., Lu, Z., Zheng, B., Carmichael, G. R., Lelieveld,
559	J., Pöschl, U., and Cheng, Y.: Natural gas shortages during the "coal-to-gas"
560	transition in China have caused a large redistribution of air pollution in winter 2017, 117,
561	31018-31025, https://doi.org/10.1073/pnas.2007513117, 2020.
562	Wang, Y., Yuan, Q., Li, T., Zhu, L., and Zhang, L.: Estimating daily full-coverage near surface O3,
563	CO, and NO2 concentrations at a high spatial resolution over China based on S5P-TROPOMI
564	and GEOS-FP, ISPRS Journal of Photogrammetry and Remote Sensing, 175, 311-325,
565	https://doi.org/10.1016/j.isprsjprs.2021.03.018, 2021.
566	Wei, J., Peng, Y., Mahmood, R., Sun, L., and Guo, J.: Intercomparison in spatial distributions and
567	temporal trends derived from multi-source satellite aerosol products, Atmos. Chem. Phys., 19,
568	7183-7207, https://doi.org/10.5194/acp-19-7183-2019, 2019a.
569	Wei, J., Li, Z., Guo, J., Sun, L., Huang, W., Xue, W., Fan, T., and Cribb, M.: Satellite-Derived 1-
570	km-Resolution PM1 Concentrations from 2014 to 2018 across China, Environmental Science
571	& Technology, 53, 13265-13274, https://doi.org/10.1021/acs.est.9b03258, 2019b.
572	Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M.: Reconstructing 1-
573	km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal
574	variations and policy implications, Remote Sensing of Environment, 252, 112136,
575	https://doi.org/10.1016/j.rse.2020.112136, 2021a.
576	Wei, J., Li, Z., Xue, W., Sun, L., Fan, T., Liu, L., Su, T., and Cribb, M.: The ChinaHighPM10
577	dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China,
578	Environment International, 146, 106290, https://doi.org/10.1016/j.envint.2020.106290, 2021b.
579	Wei, J., Li, Z., Li, K., Dickerson, R. R., Pinker, R. T., Wang, J., Liu, X., Sun, L., Xue, W., and
580	Cribb, M.: Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3)
581	pollution from 2013 to 2020 across China, Remote Sensing of Environment, 270, 112775,
582	https://doi.org/10.1016/j.rse.2021.112775, 2022a.

583 584 585	Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R. T., Dickerson, R. R., Lin, J., Boersma, K. F., Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., and Wang, J.: Ground-Level NO2 Surveillance from Space Across China for High Resolution Using Interpretable Spatiotemporally Weighted
586	Artificial Intelligence, Environmental Science & Technology, 10,1021/acs.est.2c03834, 2022b.
587	WHO: Coronavirus Disease (COVID-19) Pandemic. The World Health Organization. Available
588	online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019_2020
500	Wu H. Zhang V. Zhao M. Liu W. Magnussen C. G. Wei L. and Yi B. Short term effects of
509	exposure to ambient PM1 on blood pressure in children and adolescents aged 0 to 18 years in
590	Shandang Province, China, Atmospheric Environment, 282, 110180
291	https://doi.org/10.1016/j.etmosony.2022.110180.2022e
592	Wu H Lu Z Wai I Zhang P Liu X Zhao M Liu W Guo X and Yi P : Effects of the
593	Wu, H., Lu, Z., Wei, J., Zhang, B., Liu, A., Zhao, Wi, Liu, W., Guo, A., and Al, B. Ellecis of the
594	Lockdown on Air Politikan Levels and Associated Reductions in Ischemic Stroke
595	Incidence in Shandong Province, China, 10, <u>https://doi.org/10.3389/1publi.2022.870013</u> ,
596	
597	Xu, H., Bechle, M. J., Wang, M., Szpiro, A. A., Vedal, S., Bai, Y., and Marshall, J. D.: National
598	PM2.5 and NO2 exposure models for China based on land use regression, satellite
599	measurements, and universal kriging, Science of The Total Environment, 655, 423-433,
600	https://doi.org/10.1016/j.scitotenv.2018.11.125, 2019.
601	Xu, J., Zhou, J., Luo, P., Mao, D., Xu, W., Nima, Q., Cui, C., Yang, S., Ao, L., Wu, J., Wei, J., Chen,
602	G., Li, S., Guo, Y., Zhang, J., Liu, Z., and Zhao, X.: Associations of long-term exposure to
603	ambient air pollution and physical activity with insomnia in Chinese adults, Science of The
604	Total Environment, 792, 148197, <u>https://doi.org/10.1016/j.scitotenv.2021.148197</u> , 2021.
605	Xu, R., Shi, C., Wei, J., Lu, W., Li, Y., Liu, T., Wang, Y., Zhou, Y., Chen, G., Sun, H., and Liu, Y.:
606	Cause-specific cardiovascular disease mortality attributable to ambient temperature: A time-
607	stratified case-crossover study in Jiangsu province, China, Ecotoxicology and Environmental
608	Safety, 236, 113498, <u>https://doi.org/10.1016/j.ecoenv.2022.113498</u> , 2022a.
609	Xu, R., Wang, Q., Wei, J., Lu, W., Wang, R., Liu, T., Wang, Y., Fan, Z., Li, Y., Xu, L., Shi, C., Li,
610	G., Chen, G., Zhang, L., Zhou, Y., Liu, Y., and Sun, H.: Association of short-term exposure to
611	ambient air pollution with mortality from ischemic and hemorrhagic stroke, n/a,
612	<u>https://doi.org/10.1111/ene.15343</u> , 2022b.
613	Zhan, Y., Luo, Y., Deng, X., Zhang, K., Zhang, M., Grieneisen, M. L., and Di, B.: Satellite-Based
614	Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal
615	Kriging Model, Environmental Science & Technology, 52, 4180-4189,
616	10.1021/acs.est.7b05669, 2018.
617	Zhang, Y., Li, Z., Wei, J., Zhan, Y., Liu, L., Yang, Z., Zhang, Y., Liu, R., and Ma, Z.: Long-term
618	exposure to ambient NO2 and adult mortality: A nationwide cohort study in China, Journal of
619	Advanced Research, <u>https://doi.org/10.1016/j.jare.2022.02.007</u> , 2022.
620	Zhang, Z., Wang, J., Hart, J. E., Laden, F., Zhao, C., Li, T., Zheng, P., Li, D., Ye, Z., and Chen, K.:
621	National scale spatiotemporal land-use regression model for PM2.5, PM10 and NO2
622	concentration in China, Atmospheric Environment, 192, 48-54,
623	https://doi.org/10.1016/j.atmosenv.2018.08.046, 2018.
624	Zheng, B., Zhang, Q., Geng, Gn., Chen, C., Shi, Q., Cui, M., Lei, Y., and He, K. J. E. S. S. D.:
625	Changes in China's anthropogenic emissions and air quality during the COVID-19 pandemic in
626	2020, 2021.

627 Figures

628

629 Figure 1. Density plots of daily (a-c) estimates and (d-f) predictions of ground-level NO₂ (μ g/m³),

 $SO_2 (\mu g/m^3)$, and $CO (mg/m^3)$ concentrations as a function of ground measurements in China from 2013 to 2020 using the out-of-sample (top panels) and out-of-station (bottom panels) cross-

632 validation methods.

634

Figure 2. Validation of daily ground-level three NO₂ (μg/m³), SO₂ (μg/m³), and CO (mg/m³)
estimates at each individual monitoring station in China from 2013 to 2020: (a-c) accuracy (i.e.,
CV-R²) and (d-f) uncertainty (i.e., RMSE).

639

640 Figure 3. Validation results of (a-c) monthly and (d-f) yearly composites of ground-level NO₂

 $(\mu g/m^3)$, SO₂ ($\mu g/m^3$), and CO (mg/m^3) against ground measurements from all monitoring stations

642 in China for the years 2013 to 2020. Black lines are best-fit lines from linear regression, and dashed

643 lines are 1:1 lines.

Figure 4. Comparisons between (a-c) big-data-derived (horizonal resolution = 10 km) seamless ground-level NO₂ (μ g/m³), SO₂ (μ g/m³), and CO (mg/m³) concentrations and (d-f) corresponding ground measurements on 1 January 2018 in China.

649

Figure 5. Seasonal mean maps (horizonal resolution = 10 km) of ground-level NO₂ (μ g/m³), SO₂

 $(\mu g/m^3)$, and CO (mg/m³) concentrations averaged for 2013–2020 in China.

652

Figure 6. Relative changes (%) in mean ground-level NO₂, SO₂, and CO concentrations (μ g/m³) in

February, March, and April between 2019 and 2020 during the COVID-19 epidemic across the East

655 China. The area outlined in magenta and the star indicate Hubei Province and Wuhan City,

656 respectively.

Figure 7. Spatial distributions of annual mean (horizonal resolution = 10 km) of ground-level NO₂ 660 (μ g/m³), SO₂ (μ g/m³), and CO (mg/m³) concentrations for each year from 2013 to 2020 in China.

661

662

Figure 8. Temporal trends ($\mu g/m^3/yr$) of ground-level NO₂, SO₂, and CO concentrations in eastern China during the whole period (2013–2020), Clean Air Action Plan (2013–2017), 13rd Five-Year Plan (2016–2020), where only regions with trends that are significant at the 95% (p < 0.05)

confidence level are shown, and relative changes (%) during the Blue Sky Defense War (2018–
2020).

669

670 Figure 9. Spatial distributions of the percentage of polluted days exceeding air quality standards for

671 ground-level NO₂ (daily mean > 80 μ g/m³), SO₂ (daily mean > 150 μ g/m³), and CO (daily mean > 4 672 mg/m³) for each year from 2013 to 2020 in eastern China.

673

675 mean > 80 μ g/m³), (b) SO₂ (daily mean > 150 μ g/m³), (c) SO₂ (daily mean > 50 μ g/m³), and (d) CO

676 (daily mean $> 4 \text{ mg/m}^3$) for each year from 2013 to 2020 in three typical urban agglomerations in 677 China.

679 Tables

680
000

 Table 1. Summary of big data used in this study.

Category	Scientific Dataset	Abbreviation	Spatial	Temporal	Time Period	Data Source
			Resolution	Resolution		
Measurements	NO ₂ , SO ₂ , CO	-	In-situ	Hourly	2013-2020	MEE
Satellite	Tropospheric NO2 column	NO ₂	0.25°×0.25°	Daily	2013-2020	(He et al., 2020)
remote	Normalized difference	NDVI	0.05°×0.05°	Monthly	2013-2020	MOD13C2
sensing	vegetation index					
products	Surface elevation	DEM	90 m	-	-	SRTM
	Population distribution	POP	1 km	Annual	2013-2020	LandScan TM
Model	2-m air temperature	TEM	0.1°×0.1°	Hourly	2013-2020	ERA5 reanalysis
simulation	Precipitation	PRE				
	Evaporation	ET				
	Surface pressure	SP				
	10-m u-component of wind	WU				
	10-m v-component of wind	WV				
	Boundary-layer height	BLH	0.25°×0.25°	-		
	Relative humidity	RH				
	SO ₂ surface mass concentration	SO ₂	0.3125°×0.25°	3-hour	2015-2020	GEOS-FP
	CO surface concentration	CO				reanalysis
	SO ₂ surface mass concentration	SO ₂	0.625°×0.5°	Hourly	2013-2020	MERRA2
	CO surface concentration	CO				reanalysis
	NO ₂ surface concentration	NO ₂	0.75°×0.75°	3-hour	2013-2020	CAMS reanalysis
	Carbon monoxide	CO	0.1°×0.1°	Monthly	2013-2020	CAMS emission
	Nitrogen oxides	NO _x				
	Sulphur dioxide	SO_2				

682	Table 2. Statistics of the overall accuracies and predictive abilities of ambient gaseous pollutants for
683	each year in China from 2013 to 2020.

Year	Sample size	Overall accuracy						Predictive ability					
		NO ₂		SO ₂ CO		NO ₂		SO ₂		СО			
	N (10 ³)	\mathbb{R}^2	RMSE	R ²	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE
2013	169	0.77	12.48	0.83	17.97	0.80	0.56	0.53	18.16	0.68	25.04	0.60	0.78
2014	324	0.76	10.97	0.83	15.87	0.77	0.38	0.54	15.56	0.66	22.45	0.51	0.57
2015	518	0.79	9.34	0.80	13.71	0.74	0.38	0.61	13.10	0.61	19.49	0.50	0.55
2016	516	0.82	8.59	0.83	11.26	0.76	0.34	0.64	12.20	0.65	16.28	0.57	0.46
2017	527	0.86	7.57	0.86	7.79	0.82	0.24	0.72	10.67	0.74	10.80	0.70	0.32
2018	513	0.87	6.92	0.83	5.61	0.82	0.20	0.76	9.33	0.68	7.80	0.69	0.26
2019	515	0.87	6.78	0.81	4.84	0.82	0.20	0.77	9.23	0.66	6.63	0.70	0.25
2020	522	0.89	5.78	0.80	4.02	0.82	0.17	0.79	8.04	0.62	5.57	0.69	0.23

Table 3. Statistics of temporal trends ($\mu g/m^3/yr$) and relative changes (%) of ground-level NO₂,

 SO_2 , and CO concentrations during the whole period (T_{All}, 2013–2020), the Clear Air Action Plan (T_{CAAP}, 2013–2017), the 13rd Five-Year-Plan (T_{FYP}, 2016–2020), and the Blue Sky Defense War

687 688

р ·	NO ₂				SO_2	SO ₂				СО			
Region	T _{All}	TCAAP	T_{FYP}	\triangle_{BSDW}	T _{All}	TCAAP	$T_{FYP} \\$	\triangle_{BSDW}	T _{All}	TCAAP	T_{FYP}	\triangle_{BSDW}	
China	-0.23***	-0.06	-0.46***	-11	-2.01***	-2.28***	-1.54***	-27	-49***	-43***	-50***	-17	
BTH	-1.21***	-1.04***	-1.43***	-15	-6.01***	-7.78***	-3.78***	-44	-109***	-114***	-97***	-24	
YRD	-0.58***	-0.88***	-0.33	-9	-3.13***	-3.53***	-2.57***	-44	-40***	-50***	-30***	-10	
PRD	-0.51***	-0.93**	-0.21	-16	-2.01***	-3.11***	-0.80***	-23	-58***	-78***	-23***	-14	

689 Note: * p < 0.05, ** p < 0.01, and *** p < 0.001.

690 Table 4. Comparison with long-term datasets of different gaseous pollutants focusing on the whole of China generated in previous related studies

691

Species	Model	Missing values	Spatial resolution	Main input	Validation period	CV-R ²	RMSE	Literature
NO ₂	RF-STK	Yes	0.25°	OMI	2013-2016	0.62	13.3	(Zhan et al., 2018)
	RF-K	Yes	0.25°	OMI	2013-2018	0.64	11.4	(Dou et al., 2021)
	KCS	Yes	0.125°	OMI	2014-2016	0.72	7.9	(Chen et al., 2019)
	LUR	Yes	0.125°	OMI	2014-2015	0.78	-	(Xu et al., 2019)
	LME	Yes	0.1°	OMI	2014-2020	0.65	7.9	(Chi et al., 2021)
	XGBoost	Yes	0.125°	TROPOMI	2018-2020	0.67	6.4	(Chi et al., 2022)
	XGBoost	Yes	0.05°	TROPOMI	2018-2019	0.83	7.6	(Liu, 2021)
	LightGBM	No	0.05°	TROPOMI	2018-2020	0.83	6.6	(Wang et al., 2021)
	SWDF	No	0.01°	TROPOMI	2019-2020	0.93	4.9	(Wei et al., 2022b)
_	STET	No	0.1°	Big data	2013-2020	0.84	8.0	This study
SO_2	RF	No	0.25°	Emissions	2013-2014	0.64	17.1	(Li et al., 2020)
_	STET	No	0.1	Big data	2013-2020	0.84	10.1	This study
СО	RF–STK	Yes	0.1	MOPITT	2013-2016	0.51	0.54	(Liu et al., 2019)
	LightGBM	No	0.07°	TROPOMI	2018-2020	0.71	0.26	(Wang et al., 2021)
	STET	No	0.1°	Big data	2013-2020	0.80	0.29	This study

692 KCS: kriging-calibrated satellite method; LightGBM: light gradient boosted model; LME: linear mixed effect model;

693 LUR: land use regression; MOPITT: Measurements of Pollution in the Troposphere; OMI: Ozone Monitoring

694 Instrument; RF: random forest; RF-K: random forest integrated with K-means; RF-STK: random-forest-spatiotemporal-

695 kriging model; STET: space-time extremely randomized tree; SWDF: spatiotemporally weighted deep forest;

696 TROPOMI: TROPOspheric Monitoring Instrument; XGBoost: extreme gradient boosting