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Abstract 16 

Gaseous pollutants at the ground level seriously threaten the urban air quality environment and 17 

public health. There are few estimates of gaseous pollutants that are spatially and temporally 18 

resolved and continuous over long periods in China. This study takes advantage of big data and 19 

artificial intelligence technologies to generate seamless daily maps of three major pollutant gases, 20 

i.e., NO2, SO2, and CO, across China from 2013 to 2020 at a uniform spatial resolution of 10 km. 21 

Cross-validation illustrated a high data quality on a daily basis for NO2, SO2, and CO, with mean 22 

out-of-bag coefficients of determination (root-mean-square errors) of 0.84 (7.99 μg/m3), 0.84 (10.7 23 

μg/m3), and 0.80 (0.29 mg/m3), respectively. They have experienced significant declines and then 24 

recoveries during and after the COVID-19 lockdown associated with changes in anthropogenic 25 

emissions in eastern China, while surface CO recovered faster than SO2 and NO2. All gaseous 26 

pollutants decreased significantly by 0.23, 2.01, and 49 μg/m3 per year (p < 0.001) across China 27 

during 2013–2020, especially in three urban agglomerations. The declining rates were larger during 28 

2013–2017 but slowed down in recent years. Both the areas and occurrence probabilities of days 29 

exceeding air quality standards also gradually shrank and weakened over time, especially for SO2 30 

and CO, which almost disappeared during 2018–2020, suggesting significant improvements in air 31 

quality in China. This reconstructed dataset of surface gaseous pollutants, i.e., ChinaHighNO2, 32 

ChinaHighSO2, and ChinaHighCO, will benefit future (especially short-term) air pollution and 33 

environmental health-related studies. 34 

  35 
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1. Introduction 36 

Air pollution has been a major environmental concern, affecting human health, weather and climate  37 

(Kan et al., 2012; Kinney, 2008; Li et al., 2017b; Anenberg et al., 2022; Sun et al., 2010; Orellano et 38 

al., 2020; Murray et al., 2020), and has thus drawn worldwide attention. The sources of air pollution 39 

are complex. They include natural sources such as wildfires and anthropogenic emissions, including 40 

pollutants discharged from industrial production (e.g., smoke/dust, sulfur oxides, NOx, and VOCs), 41 

hazardous substances released from burning coal during heating seasons (e.g., dust, SO2, and CO), 42 

and waste gases (e.g., CO, SO2, and NOx) generated by transportation, especially in big cities. 43 

Among various air pollutants, the followings have been most widely recognized, particulate matters 44 

(e.g., PM2.5 and PM10), and gaseous pollutants (e.g., O3, NO2, SO2, and CO, among others]. Many 45 

countries have built ground-based networks to monitor a variety of conventional pollutants in real-46 

time. China has experienced serious ambient air pollution for a long time, prompting the 47 

establishment of a large-scale air quality monitoring network (Mee, 2018). Over the years, much 48 

effort has been made to model different species of air pollutants. Many studies on particulate matter 49 

(e.g., PM1, PM2.5, and PM10) have been carried out with a focus on China (Ma et al., 2022; Fang et 50 

al., 2016; Wei et al., 2019b; Chen et al., 2018; Wei et al., 2021a; Wei et al., 2021b; Li et al., 2017a; 51 

Zhang et al., 2018). By contrast, ground-level gaseous pollutants have been much less studied. 52 

The global COVID-19 pandemic has motivated many attempts to estimate surface NO2 53 

concentrations (Tian et al., 2020; Who, 2020) from various satellite-retrieved tropospheric NO2 54 

products, e.g., OMI and TROPOMI, by adopting different statistical regression (Chi et al., 2021; 55 

Qin et al., 2017; Zhang et al., 2018) and artificial intelligence (Chi et al., 2022; Dou et al., 2021; 56 

Chen et al., 2019; Zhan et al., 2018; Wang et al., 2021; Liu, 2021) models. In contrast, studies on 57 

surface SO2 and CO with a focus on whole of China are meager, limited by a lack of tropospheric 58 

satellite remote-sensing products and weaker signals (Li et al., 2020; Liu et al., 2019; Wang et al., 59 

2021; Han et al., 2022). Such studies still face more challenges, e.g., satellite data gaps and missing 60 

values seriously limit their application and the neglect of the spatial and temporal differences in air 61 

pollution in the modeling process. In addition, most previous studies mainly focused on studying a 62 

single or a few species during relatively short periods of observation. 63 
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As such, here, we aim to reconstruct a long-term daily seamless dataset of three ambient gaseous 64 

pollutants (i.e., surface NO2, SO2, and CO) in China at a uniform 10 km resolution to study air 65 

quality. We adopted the spatiotemporal ensemble-learning model to estimate three surface gaseous 66 

pollutants from big data. Using this dataset, the long-term spatiotemporal variations of the three 67 

gaseous pollutants and the impacts of implementing environmental protection policies and COVID-68 

19 epidemic are investigated. 69 

 70 

2. Materials and methods 71 

2.1 Big data 72 

2.1.1 Ground-based measurements 73 

Major input data employed in the study are hourly routine measurements of the ground-level NO2, 74 

SO2, and CO concentrations of at approximately 2000 reference-grade ground-based monitoring 75 

stations across China from 2013 to 2020. Due to a change in the reference state implemented on 31 76 

August 2018 (Mee, 2018), we first converted the concentrations of the three gaseous pollutants to 77 

the uniform standard condition (i.e., 273 K and 1013 hPa) for consistency. Daily values for each air 78 

pollutant at each station in each year were then averaged from valid hourly measurements that had 79 

undergone additional quality-control checks.  80 

 81 

2.1.2 Satellite, reanalysis, and model data 82 

Satellite remote sensing data used here include the daily seamless tropospheric NO2 products (0.25° 83 

× 0.25°) generated by first combining OMI/Aura and Global Ozone Monitoring Experiment–2B 84 

retrievals (He et al., 2020), and then gap-filling using CAMS tropospheric NO2 simulations via 85 

machine learning (Wei et al., 2022b), and MODIS monthly NDVI (0.05° × 0.05°), LandScanTM 86 

annual population (POP, 1 km) (Bright et al., 2000), and the SRTM digital elevation model (DEM, 87 

90 m). ERA5-Land (0.1° × 0.1°) and ERA5 global reanalysis (0.25° × 0.25°) provided hourly 88 

meteorological fields (Muñoz-Sabater et al., 2021; Hersbach et al., 2020). The following eight 89 

variables form the reanalysis are employed in our study: 2-m temperature (TEM), precipitation 90 

(PRE), evaporation (ET), 10-m u- and v-components of wind (WU and WV), boundary-layer height 91 

(BLH), relative humidity (RH), and surface pressure (SP). Besides, model-simulated SO2 and CO 92 
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surface mass concentrations were also included from the MERRA-2 and GEOS-FP global 93 

reanalysis every 1 and 3 hours at horizontal resolutions of 0.625° × 0.5° and 0.3125° × 0.25°, 94 

respectively. CAMS global reanalysis provided three-hour NO2 simulations modeled on the earth’s 95 

surface (every 3 hours, with a horizontal resolution of 0.75° × 0.75°) (Inness et al., 2019). 96 

Monthly ° × 0.1° anthropogenic emissions, i.e., NOx, SO2, and CO, were collected from CAMS 97 

global emission inventories. Here, for these fine-temporal-resolution variables, all hourly-level 98 

simulations in a day were first averaged for each grid to calculate daily means. All variables were 99 

aggregated or resampled into a 0.1° × 0.1° resolution for consistency.  100 

 101 

2.2 Pollutant gas modelling 102 

The current study is an extension of our previous work related to O3 (Wei et al., 2022a), aimed at 103 

extending the long-term and full-coverage mapping of multi-type ground-level gaseous pollutants at 104 

a uniform grid resolution of 0.1° × 0.1° across China. Thus, the developed Space-Time Extra-Tree 105 

(STET) model was extended to estimate three additional species of surface pollutant gases, i.e., 106 

NO2, SO2, and CO. The uniqueness of this method is that it considers the autocorrelation and 107 

differences in air pollution in space and time, improving the model performance on the basis of 108 

ensemble learning. 109 

For the surface NO2 estimation, the STET was applied to the main input variables of NO2 column 110 

amounts, model-simulated surface NO2 concentrations, and NOx emissions; together with the 111 

ancillary input variables of the aforementioned meteorological, land, and population (POP) 112 

variables, as denoted in Equation 1. Limited by long-term and high-resolution satellite tropospheric 113 

SO2 and CO products, model-simulated surface SO2 and CO concentrations and emissions were 114 

used as main predictors along with the same auxiliary variables as NO2 to construct the STET 115 

model for separately estimating surface SO2 (Equation 2) and CO (Equation 3): 116 

 117 

𝑁𝑂2(𝑖𝑗𝑡)~ 𝑓𝑆𝑇𝐸𝑇(𝑀𝑁𝑂2(𝑖𝑗𝑡), 𝑆𝑁𝑂2(𝑖𝑗𝑡), 𝐸𝑁𝑂𝑥𝑖𝑗𝑚, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡 , 𝑁𝐷𝑉𝐼𝑖𝑗𝑚, 𝐷𝐸𝑀𝑖𝑗𝑦, 𝑃𝑂𝑃𝑖𝑗𝑦, 𝑃𝑠, 𝑃𝑡)  (1) 118 

𝑆𝑂2(𝑖𝑗𝑡)~ 𝑓𝑆𝑇𝐸𝑇(𝑀𝑆𝑂2(𝑖𝑗𝑡), 𝐸𝑆𝑂2(𝑖𝑗𝑚), 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡 , 𝑁𝐷𝑉𝐼𝑖𝑗𝑚, 𝐷𝐸𝑀𝑖𝑗𝑦, 𝑃𝑂𝑃𝑖𝑗𝑦, 𝑃𝑠, 𝑃𝑡)  (2) 119 

𝐶𝑂𝑖𝑗𝑡~ 𝑓𝑆𝑇𝐸𝑇(𝑀𝐶𝑂𝑖𝑗𝑡, 𝐸𝐶𝑂𝑖𝑗𝑚, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡 , 𝑁𝐷𝑉𝐼𝑖𝑗𝑚, 𝐷𝐸𝑀𝑖𝑗𝑦, 𝑃𝑂𝑃𝑖𝑗𝑦, 𝑃𝑠, 𝑃𝑡)  (3) 120 

 121 
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where 𝑁𝑂2(𝑖𝑗𝑡), 𝑆𝑂2(𝑖𝑗𝑡), and 𝐶𝑂𝑖𝑗𝑡 indicate daily ground-based NO2, SO2, and CO measurements or 122 

estimations at one grid (i, j) on the tth day of a year; 𝑀𝑁𝑂2(𝑖𝑗𝑡), 𝑀𝑆𝑂2(𝑖𝑗𝑡), 𝑀𝐶𝑂𝑖𝑗𝑡, and 𝑆𝑁𝑂2(𝑖𝑗𝑡) 123 

indicate daily model-simulated surface NO2, SO2, and CO concentrations and the satellite 124 

tropospheric NO2 column amount at one grid (i, j) on the tth day of a year;  𝐸𝑁𝑂𝑥𝑖𝑗𝑚, 𝐸𝑆𝑂2(𝑖𝑗𝑚), and 125 

𝐸𝐶𝑂𝑖𝑗𝑚 indicate monthly anthropogenic NOx, SO2, and CO emissions at one grid (i, j) on the mth 126 

month of a year; 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡 represents each meteorological variable at one grid (i, j) on the tth 127 

day of a year; 𝐷𝐸𝑀𝑖𝑗𝑦 and 𝑃𝑂𝑃𝑖𝑗𝑦 indicate the population at one grid (i, j) of a year;  𝑃𝑠 and 𝑃𝑡 128 

indicate the space and time terms, represented by the longitudes and latitudes of spatial points and 129 

their distances to the center (𝐷𝑚𝑑) and each corner of the study domain, and the day of the year 130 

(DOY), respectively. 131 

Here, two widely-used 10-fold out-of-sample and out-of-station cross-validation (CV) methods 132 

(Wei et al., 2022a; Rodriguez et al., 2010) were employed to assess the data quality. They were 133 

performed by randomly dividing data samples and ground monitoring stations into independent 134 

training and testing datasets to evaluate the overall accuracy and prediction reliability, i.e., estimates 135 

for the samples and predictions for the stations that are excluded from training, respectively. Wei et 136 

al. (2022a) provides details about how these two methods work. 137 

 138 

3. Results and discussion 139 

3.1 Model performance 140 

Using the constructed STET models, we generated daily 10-km resolution dataset with complete 141 

coverage (spatial coverage = 100%) for three ground-level gaseous pollutants from 2013 to 2020 in 142 

China, called ChinaHighNO2, ChinaHighSO2, and ChinaHighCO, respectively. They are all 143 

assembled to the ChinaHighAirPollutants (CHAP) dataset. Figure 1 shows the cross-validation 144 

results of all daily estimates and predictions for ground-level NO2, SO2, and CO concentrations in 145 

China (sample size: N ≈ 3.6 million). Surface NO2 and SO2 concentrations fell between 200 and 146 

500 µg/m3, respectively, and daily estimates were highly correlated to observations, with the same 147 

coefficient of determination (R2 = 0.84) and slopes (0.86 and 0.84) close to 1, respectively. Average 148 

root-mean-square errors (RMSEs) of surface NO2 and SO2 estimates were 7.99 and 10.07 µg/m3, 149 

respectively, and mean absolute errors (MAEs) were 5.34 and 4.68 µg/m3, respectively. Most 150 
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observed CO concentrations were less than 10 mg/m3, agreeing well (R2 = 0.80, slope = 0.79) with 151 

daily estimates, and the average RMSE (MAE) is 0.29 (0.16) mg/m3. Compared to estimation 152 

accuracies (Figure 1a-c), prediction accuracies slightly decreased, which is acceptable considering 153 

the weak signals of trace gases. Daily SO2, NO2, and CO predictions (Figure 1d-f) show reasonable 154 

agreements with ground measurements (R2 = 0.70, 0.68, and 0.61, respectively) and their respective 155 

RMSE (MAE) values were 14.28 (8.10) µg/m3, 11.57 (7.06) µg/m3, and 0.42 (0.24) mg/m3, which 156 

basically represent the accuracy for areas without ground monitoring stations. 157 

 158 

[Please insert Figure 1 here] 159 

 160 

The performance of our air pollution modeling was also evaluated on an annual basis (Table 2). Our 161 

model works well in estimating and predicting the concentrations of different ground-level pollutant 162 

gases among different years. The model performance has continuously improved over time, as 163 

indicated by increasing correlations and decreasing uncertainties, because of increasing density of 164 

ground stations (especially in the suburban areas of cities) and improved quality control of 165 

measurements, significantly increasing the number (e.g., from 169 thousand in 2013 to more than 166 

522 thousand in 2020) and quality of data samples.  167 

 168 

[Please insert Table 2 here] 169 

 170 

Figure 2 shows the individual-site-scale cross-validated accuracy and uncertainty in estimating 171 

daily pollutant gases in China. Our model has a strong ability to capture daily surface NO2 172 

concentrations at most stations in China, with about 80% (83%) of them having CV-R2 > 0.7 173 

(RMSE < 10 µg/m3) with reference to ground measurements. By contrast, the model did not 174 

perform as well in estimating daily surface SO2 and CO concentrations. Nevertheless, regarding 175 

SO2, 80% of the stations had CV-R2 values > 0.6, RMSE values were < 12 µg/m3. Regarding CO, 176 

83% of the stations had CV-R2 values > 0.6, and RMSE values were generally < 0.4 mg/m3.  177 

 178 

[Please insert Figure 2 here] 179 

 180 
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Figure 3 shows the monthly and yearly composites of ground-level NO2, SO2, and CO 181 

concentrations as a function of ground measurements from all monitoring stations in China for the 182 

years 2013 to 2020. On the monthly scale, we collected a total of ~119,000 matched samples of the 183 

three gaseous pollutants. Accuracies significantly improved, with increasing R2 (decreasing RMSE) 184 

values of 0.93 (4.41 µg/m3), 0.97 (4.03 µg/m3), and 0.94 (0.13 mg/m3) for NO2, SO2, and CO, 185 

respectively. On the annual scale, more than ~10,000 matched samples were collected, showing 186 

better agreement with observations (e.g., R2 = 0.94, 0.98, and 0.97) and lower uncertainties (e.g., 187 

RMSE = 3.06 µg/m3, 2.46 µg/m3, and 0.07 mg/m3) for NO2, SO2, and CO, respectively. These 188 

results illustrate the high quality of our dataset for different gaseous pollutants, illustrating its 189 

applicability to the investigations of short-term exposure and long-term variations. 190 

 191 

[Please insert Figure 3 here] 192 

 193 

3.2 Spatiotemporal variations 194 

3.2.1 Spatial coverage and distribution 195 

Figure 4 shows spatial distributions of the three pollutant gases across China on a typical day (1 196 

January 2018). The spatial patterns of these gaseous pollutants are consistent with those observed 197 

on the ground, especially in highly polluted areas, e.g., severe surface NO2 pollution in the North 198 

China Plain (NCP) and high surface SO2 emissions in Shanxi Province. The unique advantage of 199 

our dataset is that it can provide valuable gaseous pollutant information on a daily basis at locations 200 

in China where ground measurements are not available. This addresses the major issues of scanning 201 

gaps and the numerous missing values in satellite remote sensing retrievals at cloudy locations, e.g., 202 

average daily spatial coverage of the OMI tropospheric NO2 product is only 42%. Our dataset 203 

provides spatial-complete coverage, significantly increasing the daily data utilization by 58%. 204 

 205 

[Please insert Figure 4 here] 206 

 207 

Figure 5 shows seasonal maps for each gas pollutant during the period 2013–2020 across China. 208 

Pollutant gases vary significantly in space and time across China, where high surface NO2 levels are 209 

https://doi.org/10.5194/acp-2022-627
Preprint. Discussion started: 19 September 2022
c© Author(s) 2022. CC BY 4.0 License.



9 

 

mainly distributed in typical urban agglomerations, e.g., the Beijing-Tianjin-Hebei (BTH) region, 210 

the Yangtze River and Pearl River Deltas (YRD and PRD), and scattered large cities with intensive 211 

human activities and highly developed transportation systems (e.g., Urumqi, Chengdu, Xi'an, and 212 

Wuhan, among others). High surface SO2 concentrations are mainly observed in northern China 213 

(e.g., Shanxi, Hebei, and Shandong Provinces), associated with combustion emissions from 214 

anthropogenic sources, and the Yunnan Guizhou Plateau in southwest China, likely associated with 215 

emissions from volcanic eruptions. By contrast, except in some areas in central China (e.g., Shanxi 216 

and Hebei), surface CO concentrations are overall low.  217 

Over time, significant differences in spatial patterns were seen. Surface NO2, SO2, and CO in 218 

summer (average = 15.9 ± 4.7 µg/m3, 22.9 ± 13.4 µg/m3, and 1.1 ± 0.3 mg/m3, respectively) were 219 

the lowest, thanks to favorable meteorological conditions. Pollution levels were highest in winter, 220 

with average values increasing by ~1.5–1.9 times those in summer. This difference was much larger 221 

in central and eastern China, e.g., 2.3–3.4 times higher in the BTH, due to large amounts of direct 222 

NOx, SO2, and CO emissions from burning coal for heating in winter in northern China. Spring and 223 

autumn show relatively similar spatial patterns among three gaseous pollutants. 224 

 225 

[Please insert Figure 5 here] 226 

 227 

3.2.2 Short-term epidemic effects on air quality 228 

The unique advantage of seamless day-to-day gaseous pollutant maps allows us to investigate the 229 

COVID-19 effects (Who, 2020) in China. Here, we compared the relative differences of each air 230 

pollutant from February to April between 2020 and 2019 in eastern China (Figure 6). In February, 231 

surface NO2 sharply reduced by more than 30% in eastern China, especially in key urban 232 

agglomerations and megacities (relative change > 50%). A significant decrease in surface SO2 (> 233 

40%) was observed in northern areas where heavy industry is the mainstay in China, while there 234 

was little change in southern China. Surface CO also showed drastic decreases, especially in 235 

southeast China, but the amplitude was smaller than those of the other two gaseous pollutants. 236 

These were attributed to extensive plant closures and traffic controls due to the lockdown, which 237 

started at the end of January 2020, significantly reducing anthropogenic NOx, SO2, and CO 238 
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emissions (Ding et al., 2020; Zheng et al., 2021). 239 

In March, surface NO2 concentrations were still largely lower than typical levels in most areas, 240 

especially in areas hit hardest by the epidemic, i.e., Hubei province and its surrounding areas 241 

(relative change > 30%). By comparison, the decline in surface SO2 largely slowed by more than 242 

two times in the NCP and Shanxi Province. However, surface CO returned to normal levels the 243 

fastest. In April, surface NO2 and SO2 were comparable to historical concentrations (within ± 10%) 244 

or alternately changed across eastern China due to rebounding anthropogenic emissions (Ding et al., 245 

2020), indicating that they were almost recovered. In addition, the three air pollutants fell within ± 246 

10% around Wuhan, Hubei Province, indicating that people there had returned to normal life.  247 

 248 

[Please insert Figure 6 here] 249 

 250 

3.2.3 Long-term trends and policy implications 251 

To better investigate the spatiotemporal variations of surface air pollution, we calculated linear 252 

trends and significance levels using monthly anomalies by removing seasonal cycles (Wei et al., 253 

2019a). Given that monitoring stations were sparse and unevenly distributed in western China, 254 

especially in earlier years, we will focus on eastern part of the country for the trend analysis. Figure 255 

7 shows annual mean maps of the three gaseous pollutants for each year from 2013 to 2020 in 256 

eastern China. They all have changed greatly in the past eight years across China, peaking around 257 

2017 and have declined to their lowest levels in 2020, at annual mean surface decreasing rates of -258 

12%, -55%, and -31% across China for NO2, SO2, and CO concentrations, respectively.  259 

 260 

[Please insert Figure 7 here] 261 

 262 

Most of eastern China showed more significant decreasing trends, especially in three urban 263 

agglomerations (trend = -0.51~-1.21 µg/m3/yr, p < 0.001), as well as in other large cities (e.g., 264 

Wuhan and Chengdu) (Figure 8, and Table 3). The largest downward trends mainly occurred in 265 

northern and central China, especially in the BTH (trend = -6.01 and 109 µg/m3/yr, p < 0.001, 266 

respectively). This is mainly due to the change in fuel for heating from coal to gas widespread 267 
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across China in winter (Wang et al., 2020), greatly reducing the emissions of precursor gases 268 

(Koukouli et al., 2018). Increasing trends were, however, also found in Ningxia and Shanxi in 269 

central China. 270 

We divided the study into four periods to investigate the impact of implemented major emission 271 

control measures taken in China. During the Clear Air Action Plan (CAAP, 2013–2017), surface 272 

SO2 and CO concentrations significantly decreased in most parts of eastern China, while surface 273 

NO2 reductions are limited to some places. The rates of decreases for all three pollutants accelerated 274 

in recent years, especially for NO2 in southeast China (trend > 2 µg/m3/yr, p < 0.05). These are 275 

thanks to the dramatic reductions in all main pollutant emissions (e.g., PM, SO2, and NOx) in key 276 

regions (especially urbans) through the upgrading of key industries, industrial structure adjustment, 277 

and coal-fired boiler remediation. 278 

During the 13rd Five-Year-Plan (FYP, 2016–2020), surface NO2 decreased at a rate of -0.46 µg/m3 279 

per year (p < 0.001) across China, with larger decreases in the BTH region and Hunan Province 280 

(trend > 2 µg/m3/yr, p < 0.05). More striking decreasing trends were found in southeast China. 281 

Surface SO2 also significant decreased but slowed down in eastern China. However, a greater 282 

downward trend was observed in Shanxi Province, mainly due to the reduction in coal consumption. 283 

Surface CO also continuously decreased, more rapidly in central China but less rapidly elsewhere. 284 

The continuous decline in all pollutants is due to the binding reduction by 10–15% of total 285 

emissions of major pollutants like COD, SO2, and NOx. 286 

During the Blue Sky Defense War (2018–2020), the majority of pollutants have dropped 287 

considerably, of which surface SO2 changed the most in China (average = -27%), especially in 288 

central and eastern China (relative change > 50%). In addition, SO2 decreased by 23–44% in three 289 

key regions. Followed by surface CO with the national and regional mean reductions of 17% and 290 

10–24%, respectively. By contrast, surface NO2 had the least reduction at an average decreasing 291 

rate of 11% across China and 9–16% for the three key regions. The improvement in air quality 292 

benefited from continuous reductions (by 2–3%) in total air pollutant emissions, coordinated 293 

reductions in greenhouse gas emissions, and the impacts of COVID-19. 294 

 295 

[Please insert Figure 8 and Table 3 here] 296 
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 297 

With the daily seamless datasets, we can investigate the number of days exceeding their respective 298 

air quality standard (Level 2 limitation) in a given year to evaluate the distribution and variations of 299 

short-term pollution exposure (Figure 9). The areal extent of regions exposed to unacceptably high 300 

pollutant-gas levels (i.e., daily NO2 > 80 μg/m3, SO2 > 150 μg/m3, and CO > 4 mg/m3) were usually 301 

small. NO2 pollution was mainly found in the NCP and a handful of big cities (e.g., Xi’an, Wuhan, 302 

Guangzhou, and Shanghai), changing little over time. Surface SO2 pollution was mainly observed in 303 

in central China (e.g., Hebei, Shandong, and Shanxi), with the areal extent of polluted regions 304 

gradually decreasing over time until almost disappearing by 2020. The same was seen for surface 305 

CO pollution, being worst in the BTH region and its surrounding areas before 2018, then almost 306 

disappearing by 2020. Surface NO2 pollution was mainly observed in developed urban areas (e.g., 307 

Beijing, Tianjin, Shijiazhuang, and Wuhan), with 15% of the days exceeding the acceptable 308 

standard in the early part of the study period, then decreasing to below 5% afterward. 309 

 310 

[Please insert Figure 9 here] 311 

 312 

Regionally, significant differences in the percentage of days with pollution levels exceeding 313 

national standards are seen (Figure 10). For example, the BTH region was the only region 314 

experiencing a high NO2 exposure risk, which gradually lessened from 2013 to 2018, when the 315 

exposure risk reached zero. For surface SO2, no high exposure days (daily mean > 150 μg/m3) were 316 

observed regionally, but a large number of days exceeding the Level 1 limitation (i.e., daily mean > 317 

50 μg/m3) were found in the BTH region. However, the number of days gradually decreased until 318 

reaching zero after 2017. For surface CO, less than 1% of highly polluted days are found in the 319 

BTH region in some individual years. These results suggest that with the unrelenting efforts of air 320 

pollution prevention and control, the number of days with high pollution has been significantly 321 

reduced across China, indicating significant improvements in air quality. 322 

 323 

[Please insert Figure 10 here] 324 

 325 
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3.3 Model comparison 326 

Long-term datasets (at least 2 years) of different gaseous pollutants generated with different 327 

developed models in previous studies focusing on the whole of China are compared here. Only 328 

those studies applying the same validation approach were selected (Table 4). Most generated 329 

surface NO2 datasets had low spatial resolutions (~0.125°–0.25°) with numerous missing values 330 

limited by OMI satellite observations (Zhan et al., 2018; Dou et al., 2021; Chen et al., 2019; Xu et 331 

al., 2019; Chi et al., 2021). Some studies improved the spatial resolutions by introducing NO2 data 332 

from the recently launched Sentinel-5 TROPOMI satellite but can only provide dataset after 333 

October 2018 (Chi et al., 2022; Liu, 2021; Wang et al., 2021; Wei et al., 2022b). Surface SO2 334 

estimated from a SO2 emission inventory and surface CO from the MOPITT and TROPOMI 335 

retrievals (Li et al., 2020; Liu et al., 2019; Wang et al., 2021) have a much lower data quality (Li et 336 

al., 2020; Li et al., 2017b; Wang et al., 2021). Overall, our gaseous pollutant datasets are superior to 337 

those from the studies listed in Table 4 in terms of either overall accuracy, or spatial coverage, or 338 

length of data records. 339 

 340 

[Please insert Table 4 here] 341 

 342 

3.4 Successful applications  343 

Our surface gaseous pollutant datasets have been freely available to the public online since March 344 

2021 and have now been successfully employed for various application studies in environment and 345 

health. Strong associations and negative effects between ambient gaseous pollution (e.g., NO2, SO2, 346 

and CO) and a variety of diseases has been demonstrated for people of all ages through multi-347 

regional and national cohort studies in China. These diseases include general mortality (Zhang et 348 

al., 2022), cause-specific cardiovascular disease (Xu et al., 2022a), ischemic and hemorrhagic 349 

stroke (Xu et al., 2022b; Wu et al., 2022b; Cai et al., 2022; He et al., 2022), dementia mortality (Liu 350 

et al., 2022), blood pressure (Song et al., 2022; Wu et al., 2022a), renal function (Li et al., 2022a), 351 

neurodevelopmental delay (Su et al., 2022), serum liver enzymes (Li et al., 2022b), overweight and 352 

obesity (Chen et al., 2022b), insomnia (Xu et al., 2021), subjective sleep quality (Wang et al., 353 

2022), and visual impairment (Chen et al., 2022a). These studies attest well to the value of the 354 
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CHAP dataset with some unique merits for the sake of public health, among others, now and in the 355 

future. 356 

 357 

4. Summary and conclusions 358 

Exposure to air pollution is detrimental to human health, which has been a major public concern in 359 

heavy polluted regions like China where ground-based observation of pollutants is relatively short 360 

and sparse than major developed countries. Moreover, the pollutants to travel long distances to 361 

affect large down steam regions. To remedy the limitations of ground-based air pollution 362 

observation, this study applies the machine learning model of Space-Time Extra-Tree to estimate 363 

ambient gaseous pollutants across China, with extensive input variables measured on the monitors, 364 

satellites, and models. The estimated quantities are daily 10 km resolution (about 0.1 degrees) 365 

seamless (spatial coverage = 100%) dataset for ground-level NO2, SO2, and CO concentrations in 366 

China since 2013. This dataset was cross-evaluated in terms of overall accuracy and predictive 367 

ability at different spatiotemporal levels. Daily estimates (predictions) of surface NO2, SO2, and CO 368 

from 2013 to 2020 across China are highly consistent with observations with average sample-based 369 

(station-based) CV-R2 of 0.84 (0.68), 0.84 (0.7), and 0.8 (0.61), and RMSEs of 7.99 (11.57) μg/m3, 370 

10.7 (14.28) μg/m3, and 0.29 (0.42) mg/m3y.  371 

Pollutant gas concentrations varied significantly in the region, where high levels were mainly found 372 

in the Northern China, especially in winter. All gaseous pollutants sharply declined in eastern China 373 

during the COVID-19 outbreak, then gradually returned to historical levels. The recovery speed of 374 

surface CO was faster than for NO2 and SO2. Over time and at the national scale, they have 375 

significantly (p < 0.001) decreased by 0.23, 2.01, and 43 µg/m3 per year during 2013–2020. Larger 376 

reductions were found at the regional scale, especially the BTH. Improvements in air quality were 377 

larger in the last decade or so but have slowed down in recent years. In particular, the areal extents 378 

of regions experiencing air pollution and the probability of air pollution occurring have also 379 

gradually decreased over time, especially during the period 2018–2020. This may be related with 380 

the implementation of a series of tough environmental protection policies, which greatly reduced 381 

anthropogenic emissions and significantly improved air quality. This high-quality daily seamless 382 

dataset will benefit future environmental and health-related studies focused on China, especially 383 
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studies investigating short-term air pollution exposure. 384 

 385 

Data availability 386 

CNEMC gaseous pollutants measurements are available at http://www.cnemc.cn; Reconstructed 387 

OMI/Aura tropospheric NO2 product is available at https://doi.org/10.6084/m9.figshare.13126847; 388 

MODIS series products and MERRA2 reanalysis are available at https://search.earthdata.nasa.gov/; 389 

SRTM DEM is available at https://www2.jpl.nasa.gov/srtm/; LandScanTM population is available at 390 

https://landscan.ornl.gov/; ERA5 reanalysis is available at https://cds.climate.copernicus.eu/; GEOS 391 

CF data is available at https://portal.nccs.nasa.gov/datashare/gmao/; CAMS reanalysis and emission 392 

inventory are available at https://ads.atmosphere.copernicus.eu/. 393 

 394 

CHAP dataset availability 395 

The ChinaHighAirPollutants (CHAP) dataset is open access and freely available at https://weijing-396 

rs.github.io/product.html. The ChinaHighNO2 dataset is available at 397 

https://doi.org/10.5281/zenodo.4641542, the ChinaHighSO2 dataset is available at 398 

https://doi.org/10.5281/zenodo.4641538, and the ChinaHighCO dataset is available at 399 

https://doi.org/10.5281/zenodo.4641530.  400 
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Figures 627 

 628 

Figure 1. Density plots of daily (a-c) estimates and (d-f) predictions of ground-level NO2 (µg/m3), 629 

SO2 (µg/m3), and CO (mg/m3) concentrations as a function of ground measurements in China from 630 

2013 to 2020 using the out-of-sample (top panels) and out-of-station (bottom panels) cross-631 

validation methods. 632 

633 
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 634 

Figure 2. Validation of daily ground-level three NO2 (µg/m3), SO2 (µg/m3), and CO (mg/m3) 635 

estimates at each individual monitoring station in China from 2013 to 2020: (a-c) accuracy (i.e., 636 

CV-R2) and (d-f) uncertainty (i.e., RMSE). 637 

  638 
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 639 

Figure 3. Validation results of (a-c) monthly and (d-f) yearly composites of ground-level NO2 640 

(µg/m3), SO2 (µg/m3), and CO (mg/m3) against ground measurements from all monitoring stations 641 

in China for the years 2013 to 2020. Black lines are best-fit lines from linear regression, and dashed 642 

lines are 1:1 lines.  643 
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 644 

Figure 4. Comparisons between (a-c) big-data-derived (horizonal resolution = 10 km) seamless 645 

ground-level NO2 (µg/m3), SO2 (µg/m3), and CO (mg/m3) concentrations and (d-f) corresponding 646 

ground measurements on 1 January 2018 in China. 647 

  648 
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 649 

Figure 5. Seasonal mean maps (horizonal resolution = 10 km) of ground-level NO2 (µg/m3), SO2 650 

(µg/m3), and CO (mg/m3) concentrations averaged for 2013–2020 in China. 651 
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 652 

Figure 6. Relative changes (%) in mean ground-level NO2, SO2, and CO concentrations (µg/m3) in 653 

February, March, and April between 2019 and 2020 during the COVID-19 epidemic across the East 654 

China. The area outlined in magenta and the star indicate Hubei Province and Wuhan City, 655 

respectively. 656 

 657 
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 658 

Figure 7. Spatial distributions of annual mean (horizonal resolution = 10 km) of ground-level NO2 659 

(µg/m3), SO2 (µg/m3), and CO (mg/m3) concentrations for each year from 2013 to 2020 in China. 660 

 661 
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 662 

Figure 8. Temporal trends (µg/m3/yr) of ground-level NO2, SO2, and CO concentrations in eastern 663 

China during the whole period (2013–2020), Clean Air Action Plan (2013–2017), 13rd Five-Year 664 

Plan (2016–2020), where only regions with trends that are significant at the 95% (p < 0.05) 665 

confidence level are shown, and relative changes (%) during the Blue Sky Defense War (2018–666 

2020).  667 

  668 
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 669 

Figure 9. Spatial distributions of the percentage of polluted days exceeding air quality standards for 670 

ground-level NO2 (daily mean > 80 μg/m3), SO2 (daily mean > 150 μg/m3), and CO (daily mean > 4 671 

mg/m3) for each year from 2013 to 2020 in eastern China.  672 
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 673 
Figure 10. Percentage of days exceeding the air quality standards for ground-level (a) NO2 (daily 674 

mean > 80 μg/m3), (b) SO2 (daily mean > 150 μg/m3), (c) SO2 (daily mean > 50 μg/m3), and (d) CO 675 

(daily mean > 4 mg/m3) for each year from 2013 to 2020 in three typical urban agglomerations in 676 

China. 677 

  678 
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Tables 679 

Table 1. Summary of big data used in this study. 680 
Category Scientific Dataset Abbreviation Spatial 

Resolution 

Temporal 

Resolution 

Time Period Data Source 

Measurements NO2, SO2, CO - In-situ Hourly 2013–2020 MEE 

Satellite 

remote 

sensing 

products 

Tropospheric NO2 column NO2 0.25°×0.25° Daily 2013–2020 (He et al., 2020) 

Normalized difference 

vegetation index 

NDVI 0.05°×0.05° Monthly 2013–2020 MOD13C2 

Surface elevation DEM 90 m - - SRTM  

Population distribution POP 1 km Annual 2013–2020 LandScanTM 

Model 

simulation 

2-m air temperature TEM 0.1°×0.1° Hourly 2013–2020 ERA5 reanalysis 

Precipitation PRE    

Evaporation ET    

Surface pressure SP    

10-m u-component of wind WU    

10-m v-component of wind WV    

Boundary-layer height BLH 0.25°×0.25°   

Relative humidity RH    

SO2 surface mass concentration SO2 0.3125°×0.25° 3-hour 2015–2020 GEOS-FP 

reanalysis CO surface concentration CO   

SO2 surface mass concentration SO2 0.625°×0.5° Hourly 2013–2020 MERRA2 

reanalysis CO surface concentration CO   

NO2 surface concentration NO2 0.75°×0.75° 3-hour 2013–2020 CAMS reanalysis 

Carbon monoxide CO 0.1°×0.1° Monthly 2013–2020 CAMS emission 

inventory Nitrogen oxides NOx     

Sulphur dioxide SO2     

  681 
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Table 2. Statistics of the overall accuracies and predictive abilities of ambient gaseous pollutants for 682 

each year in China from 2013 to 2020. 683 

Year 

Sample 

size  

Overall accuracy Predictive ability 

NO2  SO2  CO  NO2  SO2  CO  

N (103) R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

2013 169 0.77 12.48 0.83 17.97 0.80 0.56 0.53 18.16 0.68 25.04 0.60 0.78 

2014 324 0.76 10.97 0.83 15.87 0.77 0.38 0.54 15.56 0.66 22.45 0.51 0.57 

2015 518 0.79 9.34 0.80 13.71 0.74 0.38 0.61 13.10 0.61 19.49 0.50 0.55 

2016 516 0.82 8.59 0.83 11.26 0.76 0.34 0.64 12.20 0.65 16.28 0.57 0.46 

2017 527 0.86 7.57 0.86 7.79 0.82 0.24 0.72 10.67 0.74 10.80 0.70 0.32 

2018 513 0.87 6.92 0.83 5.61 0.82 0.20 0.76 9.33 0.68 7.80 0.69 0.26 

2019 515 0.87 6.78 0.81 4.84 0.82 0.20 0.77 9.23 0.66 6.63 0.70 0.25 

2020 522 0.89 5.78 0.80 4.02 0.82 0.17 0.79 8.04 0.62 5.57 0.69 0.23 

  684 
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Table 3. Statistics of temporal trends (μg/m3/yr) and relative changes (%) of ground-level NO2, 685 

SO2, and CO concentrations during the whole period (TAll, 2013–2020), the Clear Air Action Plan 686 

(TCAAP, 2013–2017), the 13rd Five-Year-Plan (TFYP, 2016–2020), and the Blue Sky Defense War 687 

(ΔBSDW, 2018–2020) in China and three typical regions.  688 

Region 
NO2    SO2    CO    

TAll TCAAP TFYP △BSDW TAll TCAAP TFYP △BSDW TAll TCAAP TFYP △BSDW 

China -0.23*** -0.06 -0.46*** -11 -2.01*** -2.28*** -1.54*** -27 -49*** -43*** -50*** -17 

BTH -1.21*** -1.04*** -1.43*** -15 -6.01*** -7.78*** -3.78*** -44 -109*** -114*** -97*** -24 

YRD -0.58*** -0.88*** -0.33 -9 -3.13*** -3.53*** -2.57*** -44 -40*** -50*** -30*** -10 

PRD -0.51*** -0.93** -0.21 -16 -2.01*** -3.11*** -0.80*** -23 -58*** -78*** -23*** -14 

Note: * p < 0.05, ** p < 0.01, and *** p < 0.001.  689 
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Table 4. Comparison with long-term datasets of different gaseous pollutants focusing on the whole 690 

of China generated in previous related studies. 691 

Species Model 
Missing 

values 

Spatial 

resolution 
Main input 

Validation 

period 
CV-R2 RMSE Literature 

NO2 RF-STK Yes 0.25° OMI 2013−2016 0.62 13.3 (Zhan et al., 2018) 

 RF-K Yes 0.25° OMI 2013−2018 0.64 11.4 (Dou et al., 2021) 

 KCS Yes 0.125° OMI 2014−2016 0.72 7.9 (Chen et al., 2019) 

 LUR Yes 0.125° OMI 2014−2015 0.78 - (Xu et al., 2019) 

 LME Yes 0.1° OMI 2014−2020 0.65 7.9 (Chi et al., 2021) 

 XGBoost Yes 0.125° TROPOMI 2018−2020 0.67 6.4 (Chi et al., 2022) 

 XGBoost Yes 0.05° TROPOMI 2018−2019 0.83 7.6 (Liu, 2021) 

 LightGBM No 0.05° TROPOMI 2018−2020 0.83 6.6 (Wang et al., 2021) 

 SWDF No 0.01° TROPOMI 2019−2020 0.93 4.9 (Wei et al., 2022b) 

 STET No 0.1° Big data 2013−2020 0.84 8.0 This study 

SO2 RF No 0.25° Emissions 2013−2014 0.64 17.1 (Li et al., 2020) 

 STET No 0.1 Big data 2013−2020 0.84 10.1 This study 

CO RF–STK Yes 0.1 MOPITT 2013−2016 0.51 0.54 (Liu et al., 2019) 

 LightGBM No 0.07° TROPOMI 2018−2020 0.71 0.26 (Wang et al., 2021) 

 STET No 0.1° Big data 2013−2020 0.80 0.29 This study 

KCS: kriging-calibrated satellite method; LightGBM: light gradient boosted model; LME: linear mixed effect model; 692 

LUR: land use regression; MOPITT: Measurements of Pollution in the Troposphere; OMI: Ozone Monitoring 693 

Instrument; RF: random forest; RF-K: random forest integrated with K-means; RF-STK: random-forest-spatiotemporal-694 

kriging model; STET: space-time extremely randomized tree; SWDF: spatiotemporally weighted deep forest; 695 

TROPOMI: TROPOspheric Monitoring Instrument; XGBoost: extreme gradient boosting 696 

 697 
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